File size: 4,728 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
 
5649339
e547b24
c7accf3
6f5a32e
e547b24
 
c7accf3
b1cd1e8
c7accf3
e547b24
40d7442
001cbbb
e547b24
9be63af
e547b24
 
 
6f5a32e
e547b24
 
6f5a32e
3f2e57b
 
 
 
e547b24
 
 
 
 
3f2e57b
e547b24
 
 
 
6f5a32e
 
e547b24
 
 
 
 
 
 
6f5a32e
3f2e57b
e547b24
6f5a32e
e547b24
 
40d7442
 
 
 
 
 
 
e547b24
02f8cfa
bc84ac0
02f8cfa
 
73f7edc
e547b24
 
02f8cfa
b1cd1e8
02f8cfa
 
 
 
3febe0e
40d7442
272137e
02f8cfa
 
bc84ac0
12c1d15
 
02f8cfa
 
 
e547b24
02f8cfa
 
 
 
ebc6be0
 
40d7442
 
 
1fdefaa
40d7442
e547b24
3f2e57b
e547b24
06ca9b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json


API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 3000

def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
    if prompt == "" or prompt == None:
        return None

    if lora_id.strip() == "" or lora_id == None:
        lora_id = "black-forest-labs/FLUX.1-dev" 

    key = random.randint(0, 999)

    API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)
    
    payload = {
        "inputs": prompt,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed,
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image, seed
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None


examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#app-container {
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
    gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)

        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        with gr.Row():
            seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output")

        gr.Examples(
            examples = examples,
            inputs = [text_prompt],
        )
        
        text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=[image_output,seed_output])

app.launch(show_api=False, share=False)