File size: 20,802 Bytes
6a34fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, BertConfig
from transformers import AdamW, BertForSequenceClassification, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import pandas as pd
import io
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd.gradcheck import zero_gradients
import argparse
import random
from utils import *
import os
class softCrossEntropy(nn.Module):
def __init__(self, reduce=True):
super(softCrossEntropy, self).__init__()
self.reduce = reduce
return
def forward(self, inputs, target):
"""
:param inputs: predictions
:param target: target labels in vector form
:return: loss
"""
log_likelihood = -F.log_softmax(inputs, dim=1)
sample_num, class_num = target.shape
if self.reduce:
loss = torch.sum(torch.mul(log_likelihood, target)) / sample_num
else:
loss = torch.sum(torch.mul(log_likelihood, target), 1)
return loss
def one_hot_tensor(y_batch_tensor, num_classes, device):
y_tensor = torch.FloatTensor(y_batch_tensor.size(0), num_classes).fill_(0).to(device)
y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0
return y_tensor
class on_manifold_samples(object):
def __init__(self, epsilon_x=1e-4, epsilon_y=0.1):
super(on_manifold_samples, self).__init__()
self.epsilon_x = epsilon_x
self.epsilon_y = epsilon_y
def generate(self, input_ids, input_mask, y, model):
model.eval()
with torch.no_grad():
if torch.cuda.device_count() > 1:
embedding = model.module.get_input_embeddings()(input_ids)
else:
embedding = model.get_input_embeddings()(input_ids)
x = embedding.detach()
inv_index = torch.arange(x.size(0) - 1, -1, -1).long()
x_tilde = x[inv_index, :].detach()
y_tilde = y[inv_index, :]
x_init = x.detach() + torch.zeros_like(x).uniform_(-self.epsilon_x, self.epsilon_x)
x_init.requires_grad_()
zero_gradients(x_init)
if x_init.grad is not None:
x_init.grad.data.fill_(0)
fea_b = model(inputs_embeds=x_init, token_type_ids=None, attention_mask=input_mask)[1][-1]
fea_b = torch.mean(fea_b, 1)
with torch.no_grad():
fea_t = model(inputs_embeds=x_tilde, token_type_ids=None, attention_mask=input_mask)[1][-1]
fea_t = torch.mean(fea_t, 1)
Dx = cos_dist(fea_b, fea_t)
model.zero_grad()
if torch.cuda.device_count() > 1:
Dx = Dx.mean()
Dx.backward()
x_prime = x_init.data - self.epsilon_x * torch.sign(x_init.grad.data)
x_prime = torch.min(torch.max(x_prime, embedding - self.epsilon_x), embedding + self.epsilon_x)
y_prime = (1 - self.epsilon_y) * y + self.epsilon_y * y_tilde
model.train()
return x_prime.detach(), y_prime.detach()
class off_manifold_samples(object):
def __init__(self, eps=0.001, rand_init='n'):
super(off_manifold_samples, self).__init__()
self.eps = eps
self.rand_init = rand_init
def generate(self, model, input_ids, input_mask, labels):
model.eval()
ny = labels
with torch.no_grad():
if torch.cuda.device_count() > 1:
embedding = model.module.get_input_embeddings()(input_ids)
else:
embedding = model.get_input_embeddings()(input_ids)
input_embedding = embedding.detach()
#random init the adv samples
if self.rand_init == 'y':
input_embedding = input_embedding + torch.zeros_like(input_embedding).uniform_(-self.eps, self.eps)
input_embedding.requires_grad = True
zero_gradients(input_embedding)
if input_embedding.grad is not None:
input_embedding.grad.data.fill_(0)
cost = model(inputs_embeds=input_embedding, token_type_ids=None, attention_mask=input_mask, labels=ny)[0]
if torch.cuda.device_count() > 1:
cost = cost.mean()
model.zero_grad()
cost.backward()
off_samples = input_embedding + self.eps*torch.sign(input_embedding.grad.data)
off_samples = torch.min(torch.max(off_samples, embedding - self.eps), embedding + self.eps)
model.train()
return off_samples.detach()
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
# Function to calculate the accuracy of our predictions vs labels
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=128, type=int, help="Batch size for training.")
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.")
parser.add_argument("--dataset", default='20news-15', type=str, help="dataset")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--beta_on", default=1., type=float, help="Weight of on manifold reg")
parser.add_argument("--beta_off", default=1., type=float, help="Weight of off manifold reg")
parser.add_argument("--eps_in", default=1e-4, type=float, help="Perturbation size of on-manifold regularizer")
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label")
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training")
parser.add_argument('--saved_dataset', type=str, default='n', help='whether save the preprocessed pt file of the dataset')
args = parser.parse_args()
print(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
set_seed(args)
ece_criterion = ECE().to(args.device)
soft_ce = softCrossEntropy()
on_manifold = on_manifold_samples(epsilon_x=args.eps_in, epsilon_y=args.eps_y)
off_manifold = off_manifold_samples(eps=args.eps_out)
# load dataset
if args.saved_dataset == 'n':
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
train_input_ids = []
val_input_ids = []
test_input_ids = []
if args.dataset == '20news' or args.dataset == '20news-15':
MAX_LEN = 150
else:
MAX_LEN = 256
for sent in train_sentences:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
# This function also supports truncation and conversion
# to pytorch tensors, but we need to do padding, so we
# can't use these features :( .
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
train_input_ids.append(encoded_sent)
for sent in val_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
)
val_input_ids.append(encoded_sent)
for sent in test_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
max_length = MAX_LEN,
)
test_input_ids.append(encoded_sent)
# Pad our input tokens
train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
# Create attention masks
train_attention_masks = []
val_attention_masks = []
test_attention_masks = []
# Create a mask of 1s for each token followed by 0s for padding
for seq in train_input_ids:
seq_mask = [float(i>0) for i in seq]
train_attention_masks.append(seq_mask)
for seq in val_input_ids:
seq_mask = [float(i>0) for i in seq]
val_attention_masks.append(seq_mask)
for seq in test_input_ids:
seq_mask = [float(i>0) for i in seq]
test_attention_masks.append(seq_mask)
# Convert all of our data into torch tensors, the required datatype for our model
train_inputs = torch.tensor(train_input_ids)
validation_inputs = torch.tensor(val_input_ids)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(val_labels)
train_masks = torch.tensor(train_attention_masks)
validation_masks = torch.tensor(val_attention_masks)
test_inputs = torch.tensor(test_input_ids)
test_labels = torch.tensor(test_labels)
test_masks = torch.tensor(test_attention_masks)
# Create an iterator of our data with torch DataLoader.
train_data = TensorDataset(train_inputs, train_masks, train_labels)
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
prediction_data = TensorDataset(test_inputs, test_masks, test_labels)
dataset_dir = 'dataset/{}'.format(args.dataset)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
torch.save(train_data, dataset_dir+'/train.pt')
torch.save(validation_data, dataset_dir+'/val.pt')
torch.save(prediction_data, dataset_dir+'/test.pt')
else:
dataset_dir = 'dataset/{}'.format(args.dataset)
train_data = torch.load(dataset_dir+'/train.pt')
validation_data = torch.load(dataset_dir+'/val.pt')
prediction_data = torch.load(dataset_dir+'/test.pt')
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size)
if args.dataset == '20news':
num_labels = 20
elif args.dataset == '20news-15':
num_labels = 15
elif args.dataset == 'wos-in':
num_labels = 100
elif args.dataset == 'wos':
num_labels = 134
print(num_labels)
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(args.device)
#######train model
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay_rate': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay_rate': 0.0}
]
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
t_total = len(train_dataloader) * args.epochs
# Store our loss and accuracy for plotting
best_val = -np.inf
# trange is a tqdm wrapper around the normal python range
for epoch in trange(args.epochs, desc="Epoch"):
# Training
# Set our model to training mode (as opposed to evaluation mode)
# Tracking variables
tr_loss1, tr_loss2 = 0, 0
nb_tr_examples, nb_tr_steps = 0, 0
model.train()
# Train the data for one epoch
for step, batch in enumerate(train_dataloader):
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# generate on manifold samples
targets_onehot = one_hot_tensor(b_labels, num_labels, args.device)
on_manifold_x, on_manifold_y = on_manifold.generate(b_input_ids, b_input_mask, targets_onehot, model)
model.train()
# train with on manifold samples
on_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=on_manifold_x)[0]
loss_on = soft_ce(on_manifold_logits, on_manifold_y)
#generate off manifold samples
off_manifold_x = off_manifold.generate(model, b_input_ids, b_input_mask, b_labels)
model.train()
# train with off manifold samples
off_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=off_manifold_x)[0]
off_manifold_prob = F.softmax(off_manifold_logits, dim=1)
loss_off = -torch.mean(-torch.sum(off_manifold_prob*torch.log(off_manifold_prob), dim=1))
loss_reg = args.beta_on*loss_on + args.beta_off*loss_off
if torch.cuda.device_count() > 1:
loss_reg = loss_reg.mean()
# Clear out the gradients (by default they accumulate)
optimizer.zero_grad()
loss_reg.backward()
loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0]
if torch.cuda.device_count() > 1:
loss_ce = loss_ce.mean()
loss_ce.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient
optimizer.step()
# Update tracking variables
tr_loss1 += loss_ce.item()
tr_loss2 += loss_reg.item()
nb_tr_examples += b_input_ids.size(0)
nb_tr_steps += 1
print("Train cross entropy loss: {} | reg loss: {}".format(tr_loss1/nb_tr_steps, tr_loss2/nb_tr_steps))
# Validation
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
eval_accurate_nb = 0
nb_eval_examples = 0
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_eval_examples += label_ids.shape[0]
eval_accuracy = eval_accurate_nb/nb_eval_examples
print("Validation Accuracy: {}".format(eval_accuracy))
scheduler.step(eval_accuracy)
if eval_accuracy > best_val:
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.dataset, args.seed, args.eps_in, args.eps_y, args.eps_out)
output_dir = './model_save/{}'.format(dirname)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model to %s" % output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)
#tokenizer.save_pretrained(output_dir)
best_val = eval_accuracy
# ##### test model on test data
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions , true_labels = [], []
eval_accurate_nb = 0
nb_test_examples = 0
logits_list = []
labels_list = []
# Predict
for batch in prediction_dataloader:
# Add batch to GPU
batch = tuple(t.to(args.device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_test_examples += label_ids.shape[0]
# Store predictions and true labels
predictions.append(logits)
true_labels.append(label_ids)
print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples))
logits_ece = torch.cat(logits_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(logits_ece, labels_ece).item()
print('ECE on test data: {}'.format(ece))
if __name__ == "__main__":
main() |