File size: 10,922 Bytes
6a34fd4 445302e 6a34fd4 445302e 6a34fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# import torch.nn as nn
# import torch
import argparse
from torch.utils.data import DataLoader
import torch.nn as nn
from torch.optim import Adam, SGD
import torch
from sklearn.metrics import precision_score, recall_score, f1_score
# from pretrainer import BERTFineTuneTrainer
from dataset import TokenizerDataset
from vocab import Vocab
import tqdm
import numpy as np
import time
from bert import BERT
# from vocab import Vocab
# class BERTForSequenceClassification(nn.Module):
# """
# Since its classification,
# n_labels = 2
# """
# def __init__(self, vocab_size, n_labels, layers=None, hidden=768, n_layers=12, attn_heads=12, dropout=0.1):
# super().__init__()
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)
# # model_ep0 = torch.load("output_1/bert_trained.model.ep0", map_location=device)
# self.bert = torch.load("output_1/bert_trained.model.ep0", map_location=device)
# self.dropout = nn.Dropout(dropout)
# # add an output layer
# self.
# def forward(self, x, segment_info):
# return x
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = np.argmax(labels, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
class BERTFineTunedTrainer:
def __init__(self, bert: BERT, vocab_size: int,
train_dataloader: DataLoader = None, test_dataloader: DataLoader = None,
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, num_labels=2):
"""
:param bert: BERT model which you want to train
:param vocab_size: total word vocab size
:param train_dataloader: train dataset data loader
:param test_dataloader: test dataset data loader [can be None]
:param lr: learning rate of optimizer
:param betas: Adam optimizer betas
:param weight_decay: Adam optimizer weight decay param
:param with_cuda: traning with cuda
:param log_freq: logging frequency of the batch iteration
"""
self.device = "cpu"
self.model = bert
self.test_data = test_dataloader
self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay, eps=1e-9)
if num_labels == 1:
self.criterion = nn.MSELoss()
elif num_labels == 2:
self.criterion = nn.CrossEntropyLoss()
elif num_labels > 2:
self.criterion = nn.BCEWithLogitsLoss()
self.log_freq = log_freq
self.workspace_name = workspace_name
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
def test(self, epoch):
self.iteration(epoch, self.test_data, train=False)
def iteration(self, epoch, data_loader, train=True):
"""
loop over the data_loader for training or testing
if on train status, backward operation is activated
and also auto save the model every peoch
:param epoch: current epoch index
:param data_loader: torch.utils.data.DataLoader for iteration
:param train: boolean value of is train or test
:return: None
"""
str_code = "train" if train else "test"
# Setting the tqdm progress bar
data_iter = tqdm.tqdm(enumerate(data_loader),
desc="EP_%s:%d" % (str_code, epoch),
total=len(data_loader),
bar_format="{l_bar}{r_bar}")
avg_loss = 0.0
total_correct = 0
total_element = 0
plabels = []
tlabels = []
logits_list = []
labels_list = []
self.model.eval()
for i, data in data_iter:
data = {key: value.to(self.device) for key, value in data.items()}
with torch.no_grad():
h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"])
# print(logits, logits.shape)
logits_list.append(logits.cpu())
labels_list.append(data["progress_status"].cpu())
probs = nn.LogSoftmax(dim=-1)(logits)
predicted_labels = torch.argmax(probs, dim=-1)
true_labels = torch.argmax(data["progress_status"], dim=-1)
plabels.extend(predicted_labels.cpu().numpy())
tlabels.extend(true_labels.cpu().numpy())
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels)
# Compare predicted labels to true labels and calculate accuracy
correct = (predicted_labels == true_labels).sum().item()
total_correct += correct
total_element += data["progress_status"].nelement()
precisions = precision_score(plabels, tlabels, average="weighted")
recalls = recall_score(plabels, tlabels, average="weighted")
f1_scores = f1_score(plabels, tlabels, average="weighted")
accuracy = total_correct * 100.0 / total_element
final_msg = {
"epoch": f"EP{epoch}_{str_code}",
"accuracy": accuracy,
"avg_loss": avg_loss / len(data_iter),
"precisions": precisions,
"recalls": recalls,
"f1_scores": f1_scores
}
with open("result.txt", 'w') as file:
for key, value in final_msg.items():
file.write(f"{key}: {value}\n")
print(final_msg)
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element)
if __name__ == "__main__":
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)
# is_model = torch.load("ratio_proportion_change4/output/bert_fine_tuned.IS.model.ep40", map_location=device)
# learned_parameters = model_ep0.state_dict()
# for param_name, param_tensor in learned_parameters.items():
# print(param_name)
# print(param_tensor)
# # print(model_ep0.state_dict())
# # model_ep0.add_module("out", nn.Linear(10,2))
# # print(model_ep0)
# seq_vocab = Vocab("pretraining/vocab_file.txt")
# seq_vocab.load_vocab()
# classifier = BERTForSequenceClassification(len(seq_vocab.vocab), 2)
parser = argparse.ArgumentParser()
parser.add_argument('-workspace_name', type=str, default="ratio_proportion_change4")
parser.add_argument("-t", "--test_dataset", type=str, default="../test.txt", help="test set for evaluate fine tune train set")
parser.add_argument("-tlabel", "--test_label", type=str, default="finetuning/train_in_label.txt", help="test set for evaluate fine tune train set")
##### change Checkpoint
parser.add_argument("-c", "--finetuned_bert_checkpoint", type=str, default="ratio_proportion_change4/output/bert_fine_tuned.FS.model.ep30", help="checkpoint of saved pretrained bert model")
parser.add_argument("-v", "--vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab")
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model")
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers")
parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads")
parser.add_argument("-s", "--seq_len", type=int, default=100, help="maximum sequence length")
parser.add_argument("-b", "--batch_size", type=int, default=32, help="number of batch_size")
parser.add_argument("-e", "--epochs", type=int, default=1, help="number of epochs")
# Use 50 for pretrain, and 10 for fine tune
parser.add_argument("-w", "--num_workers", type=int, default=4, help="dataloader worker size")
# Later run with cuda
parser.add_argument("--with_cuda", type=bool, default=False, help="training with CUDA: true, or false")
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n")
parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus")
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids")
parser.add_argument("--on_memory", type=bool, default=True, help="Loading on memory: true or false")
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of adam")
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="adam first beta value")
args = parser.parse_args()
for k,v in vars(args).items():
if ('dataset' in k) or ('path' in k) or ('label' in k):
if v:
setattr(args, f"{k}", args.workspace_name+"/"+v)
print(f"args.{k} : {getattr(args, f'{k}')}")
print("Loading Vocab", args.vocab_path)
vocab_obj = Vocab(args.vocab_path)
vocab_obj.load_vocab()
print("Vocab Size: ", len(vocab_obj.vocab))
print("Loading Test Dataset", args.test_dataset)
test_dataset = TokenizerDataset(args.test_dataset, args.test_label, vocab_obj, seq_len=args.seq_len, train=False)
print("Creating Dataloader")
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=4)
bert = torch.load(args.finetuned_bert_checkpoint, map_location="cpu")
if args.workspace_name == "ratio_proportion_change4":
num_labels = 7
elif args.workspace_name == "ratio_proportion_change3":
num_labels = 7
elif args.workspace_name == "scale_drawings_3":
num_labels = 7
elif args.workspace_name == "sales_tax_discounts_two_rates":
num_labels = 3
print(f"Number of Labels : {num_labels}")
print("Creating BERT Fine Tune Trainer")
trainer = BERTFineTunedTrainer(bert, len(vocab_obj.vocab), train_dataloader=None, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, workspace_name = args.workspace_name, num_labels=num_labels)
print("Testing Start....")
start_time = time.time()
for epoch in range(args.epochs):
trainer.test(epoch)
end_time = time.time()
print("Time Taken to fine tune dataset = ", end_time - start_time) |