File size: 35,637 Bytes
6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 1922da0 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 6a34fd4 5c72fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
import torch
import torch.nn as nn
# from torch.nn import functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
# import pickle
from .bert import BERT
from .seq_model import BERTSM
from .classifier_model import BERTForClassification, BERTForClassificationWithFeats
from .optim_schedule import ScheduledOptim
import tqdm
import sys
import time
import numpy as np
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from collections import defaultdict
import os
class BERTTrainer:
"""
BERTTrainer pretrains BERT model on input sequence of strategies.
BERTTrainer make the pretrained BERT model with one training method objective.
1. Masked Strategy Modeling :Masked SM
"""
def __init__(self, bert: BERT, vocab_size: int,
train_dataloader: DataLoader, val_dataloader: DataLoader = None, test_dataloader: DataLoader = None,
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=5000,
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, log_folder_path: str = None):
"""
:param bert: BERT model which you want to train
:param vocab_size: total word vocab size
:param train_dataloader: train dataset data loader
:param test_dataloader: test dataset data loader [can be None]
:param lr: learning rate of optimizer
:param betas: Adam optimizer betas
:param weight_decay: Adam optimizer weight decay param
:param with_cuda: traning with cuda
:param log_freq: logging frequency of the batch iteration
"""
cuda_condition = torch.cuda.is_available() and with_cuda
self.device = torch.device("cuda:0" if cuda_condition else "cpu")
print(cuda_condition, " Device used = ", self.device)
available_gpus = list(range(torch.cuda.device_count()))
# This BERT model will be saved
self.bert = bert.to(self.device)
# Initialize the BERT Sequence Model, with BERT model
self.model = BERTSM(bert, vocab_size).to(self.device)
# Distributed GPU training if CUDA can detect more than 1 GPU
if with_cuda and torch.cuda.device_count() > 1:
print("Using %d GPUS for BERT" % torch.cuda.device_count())
self.model = nn.DataParallel(self.model, device_ids=available_gpus)
# Setting the train, validation and test data loader
self.train_data = train_dataloader
self.val_data = val_dataloader
self.test_data = test_dataloader
# Setting the Adam optimizer with hyper-param
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps)
# Using Negative Log Likelihood Loss function for predicting the masked_token
self.criterion = nn.NLLLoss(ignore_index=0)
self.log_freq = log_freq
self.log_folder_path = log_folder_path
# self.workspace_name = workspace_name
self.save_model = False
# self.code = code
self.avg_loss = 10000
for fi in ['train', 'val', 'test']:
f = open(self.log_folder_path+f"/log_{fi}_pretrained.txt", 'w')
f.close()
self.start_time = time.time()
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
def train(self, epoch):
self.iteration(epoch, self.train_data)
def val(self, epoch):
if epoch == 0:
self.avg_loss = 10000
self.iteration(epoch, self.val_data, phase="val")
def test(self, epoch):
self.iteration(epoch, self.test_data, phase="test")
def iteration(self, epoch, data_loader, phase="train"):
"""
loop over the data_loader for training or testing
if on train status, backward operation is activated
and also auto save the model every peoch
:param epoch: current epoch index
:param data_loader: torch.utils.data.DataLoader for iteration
:param train: boolean value of is train or test
:return: None
"""
# self.log_file = f"{self.workspace_name}/logs/{self.code}/log_{phase}_pretrained.txt"
# bert_hidden_representations = [] can be used
# if epoch == 0:
# f = open(self.log_file, 'w')
# f.close()
# Progress bar
data_iter = tqdm.tqdm(enumerate(data_loader),
desc="EP_%s:%d" % (phase, epoch),
total=len(data_loader),
bar_format="{l_bar}{r_bar}")
total_correct = 0
total_element = 0
avg_loss = 0.0
if phase == "train":
self.model.train()
else:
self.model.eval()
with open(self.log_folder_path+f"/log_{phase}_pretrained.txt", 'a') as f:
sys.stdout = f
for i, data in data_iter:
# 0. batch_data will be sent into the device(GPU or cpu)
data = {key: value.to(self.device) for key, value in data.items()}
# 1. forward masked_sm model
# mask_sm_output is log-probabilities output
mask_sm_output, bert_hidden_rep = self.model.forward(data["bert_input"], data["segment_label"])
# 2. NLLLoss of predicting masked token word
loss = self.criterion(mask_sm_output.transpose(1, 2), data["bert_label"])
if torch.cuda.device_count() > 1:
loss = loss.mean()
# 3. backward and optimization only in train
if phase == "train":
self.optim_schedule.zero_grad()
loss.backward()
self.optim_schedule.step_and_update_lr()
# tokens with highest log-probabilities creates a predicted sequence
pred_tokens = torch.argmax(mask_sm_output, dim=-1)
mask_correct = (data["bert_label"] == pred_tokens) & data["masked_pos"]
total_correct += mask_correct.sum().item()
total_element += data["masked_pos"].sum().item()
avg_loss +=loss.item()
torch.cuda.empty_cache()
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss / (i + 1),
"avg_acc_mask": (total_correct / total_element * 100) if total_element != 0 else 0,
"loss": loss.item()
}
if i % self.log_freq == 0:
data_iter.write(str(post_fix))
end_time = time.time()
final_msg = {
"epoch": f"EP{epoch}_{phase}",
"avg_loss": avg_loss / len(data_iter),
"total_masked_acc": (total_correct / total_element * 100) if total_element != 0 else 0,
"time_taken_from_start": end_time - self.start_time
}
print(final_msg)
f.close()
sys.stdout = sys.__stdout__
if phase == "val":
self.save_model = False
if self.avg_loss > (avg_loss / len(data_iter)):
self.save_model = True
self.avg_loss = (avg_loss / len(data_iter))
def save(self, epoch, file_path="output/bert_trained.model"):
"""
Saving the current BERT model on file_path
:param epoch: current epoch number
:param file_path: model output path which gonna be file_path+"ep%d" % epoch
:return: final_output_path
"""
output_path = file_path + ".ep%d" % epoch
torch.save(self.bert.cpu(), output_path)
self.bert.to(self.device)
print("EP:%d Model Saved on:" % epoch, output_path)
return output_path
class BERTFineTuneTrainer:
def __init__(self, bert: BERT, vocab_size: int,
train_dataloader: DataLoader, test_dataloader: DataLoader = None,
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None,
num_labels=2, log_folder_path: str = None):
"""
:param bert: BERT model which you want to train
:param vocab_size: total word vocab size
:param train_dataloader: train dataset data loader
:param test_dataloader: test dataset data loader [can be None]
:param lr: learning rate of optimizer
:param betas: Adam optimizer betas
:param weight_decay: Adam optimizer weight decay param
:param with_cuda: traning with cuda
:param log_freq: logging frequency of the batch iteration
"""
# Setup cuda device for BERT training, argument -c, --cuda should be true
cuda_condition = torch.cuda.is_available() and with_cuda
self.device = torch.device("cuda:0" if cuda_condition else "cpu")
print(cuda_condition, " Device used = ", self.device)
available_gpus = list(range(torch.cuda.device_count()))
# This BERT model will be saved every epoch
self.bert = bert
for param in self.bert.parameters():
param.requires_grad = False
# for name, param in self.bert.named_parameters():
# if '.attention.linear_layers.0' in name or \
# '.attention.linear_layers.1' in name or \
# '.attention.linear_layers.2' in name:
# # if 'transformer_blocks.' in name:# or \
# # 'transformer_blocks.3.' in name:
# # if '2.attention.linear_layers.' in name or \
# # '3.attention.linear_layers.' in name:
# param.requires_grad = True
# Initialize the BERT Language Model, with BERT model
# self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device)
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device)
self.model = BERTForClassificationWithFeats(self.bert, num_labels, 17).to(self.device)
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device)
# Distributed GPU training if CUDA can detect more than 1 GPU
if with_cuda and torch.cuda.device_count() > 1:
print("Using %d GPUS for BERT" % torch.cuda.device_count())
self.model = nn.DataParallel(self.model, device_ids=available_gpus)
# Setting the train, validation and test data loader
self.train_data = train_dataloader
# self.val_data = val_dataloader
self.test_data = test_dataloader
# self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps)
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
self.criterion = nn.CrossEntropyLoss()
# if num_labels == 1:
# self.criterion = nn.MSELoss()
# elif num_labels == 2:
# self.criterion = nn.BCEWithLogitsLoss()
# # self.criterion = nn.CrossEntropyLoss()
# elif num_labels > 2:
# self.criterion = nn.CrossEntropyLoss()
# self.criterion = nn.BCEWithLogitsLoss()
self.log_freq = log_freq
self.log_folder_path = log_folder_path
# self.workspace_name = workspace_name
# self.finetune_task = finetune_task
self.save_model = False
self.avg_loss = 10000
self.start_time = time.time()
# self.probability_list = []
for fi in ['train', 'test']: #'val',
f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w')
f.close()
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
def train(self, epoch):
self.iteration(epoch, self.train_data)
# def val(self, epoch):
# self.iteration(epoch, self.val_data, phase="val")
def test(self, epoch):
if epoch == 0:
self.avg_loss = 10000
self.iteration(epoch, self.test_data, phase="test")
def iteration(self, epoch, data_loader, phase="train"):
"""
loop over the data_loader for training or testing
if on train status, backward operation is activated
and also auto save the model every peoch
:param epoch: current epoch index
:param data_loader: torch.utils.data.DataLoader for iteration
:param train: boolean value of is train or test
:return: None
"""
# Setting the tqdm progress bar
data_iter = tqdm.tqdm(enumerate(data_loader),
desc="EP_%s:%d" % (phase, epoch),
total=len(data_loader),
bar_format="{l_bar}{r_bar}")
avg_loss = 0.0
total_correct = 0
total_element = 0
plabels = []
tlabels = []
probabs = []
if phase == "train":
self.model.train()
else:
self.model.eval()
# self.probability_list = []
with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f:
sys.stdout = f
for i, data in data_iter:
# 0. batch_data will be sent into the device(GPU or cpu)
data = {key: value.to(self.device) for key, value in data.items()}
if phase == "train":
logits = self.model.forward(data["input"], data["segment_label"], data["feat"])
else:
with torch.no_grad():
logits = self.model.forward(data["input"], data["segment_label"], data["feat"])
loss = self.criterion(logits, data["label"])
if torch.cuda.device_count() > 1:
loss = loss.mean()
# 3. backward and optimization only in train
if phase == "train":
self.optim_schedule.zero_grad()
loss.backward()
self.optim_schedule.step_and_update_lr()
# prediction accuracy
probs = nn.Softmax(dim=-1)(logits) # Probabilities
probabs.extend(probs.detach().cpu().numpy().tolist())
predicted_labels = torch.argmax(probs, dim=-1) #correct
# self.probability_list.append(probs)
# true_labels = torch.argmax(data["label"], dim=-1)
plabels.extend(predicted_labels.cpu().numpy())
tlabels.extend(data['label'].cpu().numpy())
# Compare predicted labels to true labels and calculate accuracy
correct = (data['label'] == predicted_labels).sum().item()
avg_loss += loss.item()
total_correct += correct
# total_element += true_labels.nelement()
total_element += data["label"].nelement()
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element)
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss / (i + 1),
"avg_acc": total_correct / total_element * 100 if total_element != 0 else 0,
"loss": loss.item()
}
if i % self.log_freq == 0:
data_iter.write(str(post_fix))
precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0)
recalls = recall_score(tlabels, plabels, average="weighted")
f1_scores = f1_score(tlabels, plabels, average="weighted")
cmatrix = confusion_matrix(tlabels, plabels)
end_time = time.time()
final_msg = {
"epoch": f"EP{epoch}_{phase}",
"avg_loss": avg_loss / len(data_iter),
"total_acc": total_correct * 100.0 / total_element,
"precisions": precisions,
"recalls": recalls,
"f1_scores": f1_scores,
# "confusion_matrix": f"{cmatrix}",
# "true_labels": f"{tlabels}",
# "predicted_labels": f"{plabels}",
"time_taken_from_start": end_time - self.start_time
}
print(final_msg)
f.close()
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
sys.stdout = f1
final_msg = {
"epoch": f"EP{epoch}_{phase}",
"confusion_matrix": f"{cmatrix}",
"true_labels": f"{tlabels if epoch == 0 else ''}",
"predicted_labels": f"{plabels}",
"probabilities": f"{probabs}",
"time_taken_from_start": end_time - self.start_time
}
print(final_msg)
f1.close()
sys.stdout = sys.__stdout__
sys.stdout = sys.__stdout__
if phase == "test":
self.save_model = False
if self.avg_loss > (avg_loss / len(data_iter)):
self.save_model = True
self.avg_loss = (avg_loss / len(data_iter))
def iteration_1(self, epoch_idx, data):
try:
data = {key: value.to(self.device) for key, value in data.items()}
logits = self.model(data['input_ids'], data['segment_label'])
# Ensure logits is a tensor, not a tuple
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits, data['labels'])
# Backpropagation and optimization
self.optim.zero_grad()
loss.backward()
self.optim.step()
if self.log_freq > 0 and epoch_idx % self.log_freq == 0:
print(f"Epoch {epoch_idx}: Loss = {loss.item()}")
return loss
except Exception as e:
print(f"Error during iteration: {e}")
raise
def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"):
"""
Saving the current BERT model on file_path
:param epoch: current epoch number
:param file_path: model output path which gonna be file_path+"ep%d" % epoch
:return: final_output_path
"""
output_path = file_path + ".ep%d" % epoch
torch.save(self.model.cpu(), output_path)
self.model.to(self.device)
print("EP:%d Model Saved on:" % epoch, output_path)
return output_path
class BERTFineTuneTrainer1:
def __init__(self, bert: BERT, vocab_size: int,
train_dataloader: DataLoader, test_dataloader: DataLoader = None,
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None,
num_labels=2, log_folder_path: str = None):
"""
:param bert: BERT model which you want to train
:param vocab_size: total word vocab size
:param train_dataloader: train dataset data loader
:param test_dataloader: test dataset data loader [can be None]
:param lr: learning rate of optimizer
:param betas: Adam optimizer betas
:param weight_decay: Adam optimizer weight decay param
:param with_cuda: traning with cuda
:param log_freq: logging frequency of the batch iteration
"""
# Setup cuda device for BERT training, argument -c, --cuda should be true
cuda_condition = torch.cuda.is_available() and with_cuda
self.device = torch.device("cuda:0" if cuda_condition else "cpu")
print(cuda_condition, " Device used = ", self.device)
available_gpus = list(range(torch.cuda.device_count()))
# This BERT model will be saved every epoch
self.bert = bert
for param in self.bert.parameters():
param.requires_grad = False
# Initialize the BERT Language Model, with BERT model
self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device)
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8).to(self.device)
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 8*2).to(self.device)
# self.model = BERTForClassificationWithFeats(self.bert, num_labels, 1).to(self.device)
# Distributed GPU training if CUDA can detect more than 1 GPU
if with_cuda and torch.cuda.device_count() > 1:
print("Using %d GPUS for BERT" % torch.cuda.device_count())
self.model = nn.DataParallel(self.model, device_ids=available_gpus)
# Setting the train, validation and test data loader
self.train_data = train_dataloader
# self.val_data = val_dataloader
self.test_data = test_dataloader
# self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) #, eps=1e-9
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps)
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
self.criterion = nn.CrossEntropyLoss()
# if num_labels == 1:
# self.criterion = nn.MSELoss()
# elif num_labels == 2:
# self.criterion = nn.BCEWithLogitsLoss()
# # self.criterion = nn.CrossEntropyLoss()
# elif num_labels > 2:
# self.criterion = nn.CrossEntropyLoss()
# self.criterion = nn.BCEWithLogitsLoss()
self.log_freq = log_freq
self.log_folder_path = log_folder_path
# self.workspace_name = workspace_name
# self.finetune_task = finetune_task
self.save_model = False
self.avg_loss = 10000
self.start_time = time.time()
# self.probability_list = []
for fi in ['train', 'test']: #'val',
f = open(self.log_folder_path+f"/log_{fi}_finetuned.txt", 'w')
f.close()
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
def train(self, epoch):
self.iteration(epoch, self.train_data)
# def val(self, epoch):
# self.iteration(epoch, self.val_data, phase="val")
def test(self, epoch):
if epoch == 0:
self.avg_loss = 10000
self.iteration(epoch, self.test_data, phase="test")
def iteration(self, epoch, data_loader, phase="train"):
"""
loop over the data_loader for training or testing
if on train status, backward operation is activated
and also auto save the model every peoch
:param epoch: current epoch index
:param data_loader: torch.utils.data.DataLoader for iteration
:param train: boolean value of is train or test
:return: None
"""
# Setting the tqdm progress bar
data_iter = tqdm.tqdm(enumerate(data_loader),
desc="EP_%s:%d" % (phase, epoch),
total=len(data_loader),
bar_format="{l_bar}{r_bar}")
avg_loss = 0.0
total_correct = 0
total_element = 0
plabels = []
tlabels = []
probabs = []
if phase == "train":
self.model.train()
else:
self.model.eval()
# self.probability_list = []
with open(self.log_folder_path+f"/log_{phase}_finetuned.txt", 'a') as f:
sys.stdout = f
for i, data in data_iter:
# 0. batch_data will be sent into the device(GPU or cpu)
data = {key: value.to(self.device) for key, value in data.items()}
if phase == "train":
logits = self.model.forward(data["input"], data["segment_label"])#, data["feat"])
else:
with torch.no_grad():
logits = self.model.forward(data["input"], data["segment_label"])#, data["feat"])
loss = self.criterion(logits, data["label"])
if torch.cuda.device_count() > 1:
loss = loss.mean()
# 3. backward and optimization only in train
if phase == "train":
self.optim_schedule.zero_grad()
loss.backward()
self.optim_schedule.step_and_update_lr()
# prediction accuracy
probs = nn.Softmax(dim=-1)(logits) # Probabilities
probabs.extend(probs.detach().cpu().numpy().tolist())
predicted_labels = torch.argmax(probs, dim=-1) #correct
# self.probability_list.append(probs)
# true_labels = torch.argmax(data["label"], dim=-1)
plabels.extend(predicted_labels.cpu().numpy())
tlabels.extend(data['label'].cpu().numpy())
# Compare predicted labels to true labels and calculate accuracy
correct = (data['label'] == predicted_labels).sum().item()
avg_loss += loss.item()
total_correct += correct
# total_element += true_labels.nelement()
total_element += data["label"].nelement()
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels, correct, total_correct, total_element)
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss / (i + 1),
"avg_acc": total_correct / total_element * 100 if total_element != 0 else 0,
"loss": loss.item()
}
if i % self.log_freq == 0:
data_iter.write(str(post_fix))
precisions = precision_score(tlabels, plabels, average="weighted", zero_division=0)
recalls = recall_score(tlabels, plabels, average="weighted")
f1_scores = f1_score(tlabels, plabels, average="weighted")
cmatrix = confusion_matrix(tlabels, plabels)
end_time = time.time()
final_msg = {
"epoch": f"EP{epoch}_{phase}",
"avg_loss": avg_loss / len(data_iter),
"total_acc": total_correct * 100.0 / total_element,
"precisions": precisions,
"recalls": recalls,
"f1_scores": f1_scores,
# "confusion_matrix": f"{cmatrix}",
# "true_labels": f"{tlabels}",
# "predicted_labels": f"{plabels}",
"time_taken_from_start": end_time - self.start_time
}
print(final_msg)
f.close()
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
sys.stdout = f1
final_msg = {
"epoch": f"EP{epoch}_{phase}",
"confusion_matrix": f"{cmatrix}",
"true_labels": f"{tlabels if epoch == 0 else ''}",
"predicted_labels": f"{plabels}",
"probabilities": f"{probabs}",
"time_taken_from_start": end_time - self.start_time
}
print(final_msg)
f1.close()
sys.stdout = sys.__stdout__
sys.stdout = sys.__stdout__
if phase == "test":
self.save_model = False
if self.avg_loss > (avg_loss / len(data_iter)):
self.save_model = True
self.avg_loss = (avg_loss / len(data_iter))
def iteration_1(self, epoch_idx, data):
try:
data = {key: value.to(self.device) for key, value in data.items()}
logits = self.model(data['input_ids'], data['segment_label'])
# Ensure logits is a tensor, not a tuple
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits, data['labels'])
# Backpropagation and optimization
self.optim.zero_grad()
loss.backward()
self.optim.step()
if self.log_freq > 0 and epoch_idx % self.log_freq == 0:
print(f"Epoch {epoch_idx}: Loss = {loss.item()}")
return loss
except Exception as e:
print(f"Error during iteration: {e}")
raise
def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"):
"""
Saving the current BERT model on file_path
:param epoch: current epoch number
:param file_path: model output path which gonna be file_path+"ep%d" % epoch
:return: final_output_path
"""
output_path = file_path + ".ep%d" % epoch
torch.save(self.model.cpu(), output_path)
self.model.to(self.device)
print("EP:%d Model Saved on:" % epoch, output_path)
return output_path
class BERTAttention:
def __init__(self, bert: BERT, vocab_obj, train_dataloader: DataLoader, workspace_name=None, code=None, finetune_task=None, with_cuda=True):
# available_gpus = list(range(torch.cuda.device_count()))
cuda_condition = torch.cuda.is_available() and with_cuda
self.device = torch.device("cuda:0" if cuda_condition else "cpu")
print(with_cuda, cuda_condition, " Device used = ", self.device)
self.bert = bert.to(self.device)
# if with_cuda and torch.cuda.device_count() > 1:
# print("Using %d GPUS for BERT" % torch.cuda.device_count())
# self.bert = nn.DataParallel(self.bert, device_ids=available_gpus)
self.train_dataloader = train_dataloader
self.workspace_name = workspace_name
self.code = code
self.finetune_task = finetune_task
self.vocab_obj = vocab_obj
def getAttention(self):
# self.log_file = f"{self.workspace_name}/logs/{self.code}/log_attention.txt"
labels = ['PercentChange', 'NumeratorQuantity2', 'NumeratorQuantity1', 'DenominatorQuantity1',
'OptionalTask_1', 'EquationAnswer', 'NumeratorFactor', 'DenominatorFactor',
'OptionalTask_2', 'FirstRow1:1', 'FirstRow1:2', 'FirstRow2:1', 'FirstRow2:2', 'SecondRow',
'ThirdRow', 'FinalAnswer','FinalAnswerDirection']
df_all = pd.DataFrame(0.0, index=labels, columns=labels)
# Setting the tqdm progress bar
data_iter = tqdm.tqdm(enumerate(self.train_dataloader),
desc="attention",
total=len(self.train_dataloader),
bar_format="{l_bar}{r_bar}")
count = 0
for i, data in data_iter:
data = {key: value.to(self.device) for key, value in data.items()}
a = self.bert.forward(data["bert_input"], data["segment_label"])
non_zero = np.sum(data["segment_label"].cpu().detach().numpy())
# Last Transformer Layer
last_layer = self.bert.attention_values[-1].transpose(1,0,2,3)
# print(last_layer.shape)
head, d_model, s, s = last_layer.shape
for d in range(d_model):
seq_labels = self.vocab_obj.to_sentence(data["bert_input"].cpu().detach().numpy().tolist()[d])[1:non_zero-1]
# df_all = pd.DataFrame(0.0, index=seq_labels, columns=seq_labels)
indices_to_choose = defaultdict(int)
for k,s in enumerate(seq_labels):
if s in labels:
indices_to_choose[s] = k
indices_chosen = list(indices_to_choose.values())
selected_seq_labels = [s for l,s in enumerate(seq_labels) if l in indices_chosen]
# print(len(seq_labels), len(selected_seq_labels))
for h in range(head):
# fig, ax = plt.subplots(figsize=(12, 12))
# seq_labels = self.vocab_obj.to_sentence(data["bert_input"].cpu().detach().numpy().tolist()[d])#[1:non_zero-1]
# seq_labels = self.vocab_obj.to_sentence(data["bert_input"].cpu().detach().numpy().tolist()[d])[1:non_zero-1]
# indices_to_choose = defaultdict(int)
# for k,s in enumerate(seq_labels):
# if s in labels:
# indices_to_choose[s] = k
# indices_chosen = list(indices_to_choose.values())
# selected_seq_labels = [s for l,s in enumerate(seq_labels) if l in indices_chosen]
# print(f"Chosen index: {seq_labels, indices_to_choose, indices_chosen, selected_seq_labels}")
df_cm = pd.DataFrame(last_layer[h][d][indices_chosen,:][:,indices_chosen], index = selected_seq_labels, columns = selected_seq_labels)
df_all = df_all.add(df_cm, fill_value=0)
count += 1
# df_cm = pd.DataFrame(last_layer[h][d][1:non_zero-1,:][:,1:non_zero-1], index=seq_labels, columns=seq_labels)
# df_all = df_all.add(df_cm, fill_value=0)
# df_all = df_all.reindex(index=seq_labels, columns=seq_labels)
# sns.heatmap(df_all, annot=False)
# plt.title("Attentions") #Probabilities
# plt.xlabel("Steps")
# plt.ylabel("Steps")
# plt.grid(True)
# plt.tick_params(axis='x', bottom=False, top=True, labelbottom=False, labeltop=True, labelrotation=90)
# plt.savefig(f"{self.workspace_name}/plots/{self.code}/{self.finetune_task}_attention_scores_over_[{h}]_head_n_data[{d}].png", bbox_inches='tight')
# plt.show()
# plt.close()
print(f"Count of total : {count, head * self.train_dataloader.dataset.len}")
df_all = df_all.div(count) # head * self.train_dataloader.dataset.len
df_all = df_all.reindex(index=labels, columns=labels)
sns.heatmap(df_all, annot=False)
plt.title("Attentions") #Probabilities
plt.xlabel("Steps")
plt.ylabel("Steps")
plt.grid(True)
plt.tick_params(axis='x', bottom=False, top=True, labelbottom=False, labeltop=True, labelrotation=90)
plt.savefig(f"{self.workspace_name}/plots/{self.code}/{self.finetune_task}_attention_scores.png", bbox_inches='tight')
plt.show()
plt.close()
|