|
import argparse |
|
|
|
from torch.utils.data import DataLoader |
|
import torch |
|
|
|
from bert import BERT |
|
from pretrainer import BERTTrainer, BERTFineTuneTrainer |
|
from dataset import PretrainerDataset, TokenizerDataset |
|
from vocab import Vocab |
|
|
|
import time |
|
|
|
|
|
def train(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('-workspace_name', type=str, default=None) |
|
parser.add_argument("-p", "--pretrain_dataset", type=str, default="pretraining/pretrain.txt", help="pretraining dataset for bert") |
|
parser.add_argument("-pv", "--pretrain_val_dataset", type=str, default="pretraining/test.txt", help="pretraining validation dataset for bert") |
|
|
|
parser.add_argument("-f", "--train_dataset", type=str, default="finetuning/test_in.txt", help="fine tune train dataset for progress classifier") |
|
parser.add_argument("-t", "--test_dataset", type=str, default="finetuning/train_in.txt", help="test set for evaluate fine tune train set") |
|
parser.add_argument("-flabel", "--train_label", type=str, default="finetuning/test_in_label.txt", help="fine tune train dataset for progress classifier") |
|
parser.add_argument("-tlabel", "--test_label", type=str, default="finetuning/train_in_label.txt", help="test set for evaluate fine tune train set") |
|
|
|
parser.add_argument("-c", "--pretrained_bert_checkpoint", type=str, default="output_feb09/bert_trained.model.ep40", help="checkpoint of saved pretrained bert model") |
|
parser.add_argument("-v", "--vocab_path", type=str, default="pretraining/vocab.txt", help="built vocab model path with bert-vocab") |
|
|
|
parser.add_argument("-hs", "--hidden", type=int, default=64, help="hidden size of transformer model") |
|
parser.add_argument("-l", "--layers", type=int, default=4, help="number of layers") |
|
parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads") |
|
parser.add_argument("-s", "--seq_len", type=int, default=100, help="maximum sequence length") |
|
|
|
parser.add_argument("-b", "--batch_size", type=int, default=32, help="number of batch_size") |
|
parser.add_argument("-e", "--epochs", type=int, default=301, help="number of epochs") |
|
|
|
parser.add_argument("-w", "--num_workers", type=int, default=4, help="dataloader worker size") |
|
|
|
|
|
parser.add_argument("--with_cuda", type=bool, default=True, help="training with CUDA: true, or false") |
|
parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n") |
|
parser.add_argument("--corpus_lines", type=int, default=None, help="total number of lines in corpus") |
|
parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids") |
|
parser.add_argument("--on_memory", type=bool, default=True, help="Loading on memory: true or false") |
|
|
|
parser.add_argument("--dropout", type=float, default=0.1, help="dropout of network") |
|
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of adam") |
|
parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam") |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="adam first beta value") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--pretrain", type=bool, default=False, help="pretraining: true, or false") |
|
parser.add_argument("-o", "--output_path", type=str, default="output/bert_fine_tuned.FS.model", help="ex)output/bert.model") |
|
|
|
|
|
args = parser.parse_args() |
|
for k,v in vars(args).items(): |
|
if ('dataset' in k) or ('path' in k) or ('label' in k): |
|
if v: |
|
setattr(args, f"{k}", args.workspace_name+"/"+v) |
|
print(f"args.{k} : {getattr(args, f'{k}')}") |
|
|
|
print("Loading Vocab", args.vocab_path) |
|
vocab_obj = Vocab(args.vocab_path) |
|
vocab_obj.load_vocab() |
|
print("Vocab Size: ", len(vocab_obj.vocab)) |
|
|
|
if args.pretrain: |
|
|
|
print("Pre-training......") |
|
print("Loading Pretraining Dataset", args.pretrain_dataset) |
|
print(f"Workspace: {args.workspace_name}") |
|
pretrain_dataset = PretrainerDataset(args.pretrain_dataset, vocab_obj, seq_len=args.seq_len, select_next_seq=args.same_student_prediction) |
|
|
|
print("Loading Pretraining validation Dataset", args.pretrain_val_dataset) |
|
pretrain_valid_dataset = PretrainerDataset(args.pretrain_val_dataset, vocab_obj, seq_len=args.seq_len, select_next_seq=args.same_student_prediction) \ |
|
if args.pretrain_val_dataset is not None else None |
|
|
|
print("Creating Dataloader") |
|
pretrain_data_loader = DataLoader(pretrain_dataset, batch_size=args.batch_size, num_workers=args.num_workers) |
|
pretrain_val_data_loader = DataLoader(pretrain_valid_dataset, batch_size=args.batch_size, num_workers=args.num_workers)\ |
|
if pretrain_valid_dataset is not None else None |
|
|
|
print("Building BERT model") |
|
|
|
|
|
|
|
bert = BERT(len(vocab_obj.vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads, dropout=args.dropout) |
|
|
|
print(f"Creating BERT Trainer .... masking: True, prediction: {args.same_student_prediction}") |
|
trainer = BERTTrainer(bert, len(vocab_obj.vocab), train_dataloader=pretrain_data_loader, test_dataloader=pretrain_val_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, same_student_prediction = args.same_student_prediction, workspace_name = args.workspace_name) |
|
|
|
print("Training Start") |
|
start_time = time.time() |
|
for epoch in range(args.epochs): |
|
trainer.train(epoch) |
|
|
|
if pretrain_val_data_loader is not None: |
|
trainer.test(epoch) |
|
|
|
if epoch > 19 and trainer.save_model: |
|
trainer.save(epoch, args.output_path) |
|
end_time = time.time() |
|
print("Time Taken to pretrain dataset = ", end_time - start_time) |
|
else: |
|
print("Fine Tuning......") |
|
print("Loading Train Dataset", args.train_dataset) |
|
train_dataset = TokenizerDataset(args.train_dataset, args.train_label, vocab_obj, seq_len=args.seq_len, train=True) |
|
|
|
print("Loading Test Dataset", args.test_dataset) |
|
test_dataset = TokenizerDataset(args.test_dataset, args.test_label, vocab_obj, seq_len=args.seq_len, train=False) \ |
|
if args.test_dataset is not None else None |
|
|
|
print("Creating Dataloader") |
|
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) |
|
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ |
|
if test_dataset is not None else None |
|
|
|
print("Load Pre-trained BERT model") |
|
|
|
cuda_condition = torch.cuda.is_available() and args.with_cuda |
|
device = torch.device("cuda:0" if cuda_condition else "cpu") |
|
bert = torch.load(args.pretrained_bert_checkpoint, map_location=device) |
|
|
|
if args.workspace_name == "ratio_proportion_change4": |
|
num_labels = 7 |
|
elif args.workspace_name == "ratio_proportion_change3": |
|
num_labels = 7 |
|
elif args.workspace_name == "scale_drawings_3": |
|
num_labels = 7 |
|
elif args.workspace_name == "sales_tax_discounts_two_rates": |
|
num_labels = 3 |
|
|
|
print(f"Number of Labels : {num_labels}") |
|
print("Creating BERT Fine Tune Trainer") |
|
trainer = BERTFineTuneTrainer(bert, len(vocab_obj.vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq, workspace_name = args.workspace_name, num_labels=num_labels) |
|
|
|
print("Training Start....") |
|
start_time = time.time() |
|
for epoch in range(args.epochs): |
|
trainer.train(epoch) |
|
|
|
if epoch > 4 and trainer.save_model: |
|
trainer.save(epoch, args.output_path) |
|
|
|
if test_data_loader is not None: |
|
trainer.test(epoch) |
|
|
|
end_time = time.time() |
|
print("Time Taken to fine tune dataset = ", end_time - start_time) |
|
|
|
|
|
if __name__ == "__main__": |
|
train() |