astra / src /pretrainer.py
suryadev1's picture
v1
6a34fd4
raw
history blame
22.4 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.optim import Adam, SGD
from torch.utils.data import DataLoader
import pickle
from bert import BERT
from seq_model import BERTSM
from classifier_model import BERTForClassification
from optim_schedule import ScheduledOptim
import tqdm
import sys
import numpy as np
import visualization
from sklearn.metrics import precision_score, recall_score, f1_score
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
labels = torch.argmax(labels,1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = np.argmax(labels, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
class BERTTrainer:
"""
# Sequence..
BERTTrainer make the pretrained BERT model with two LM training method.
1. Masked Language Model : 3.3.1 Task #1: Masked LM
"""
def __init__(self, bert: BERT, vocab_size: int,
train_dataloader: DataLoader, test_dataloader: DataLoader = None,
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, same_student_prediction = False,
workspace_name=None):
"""
:param bert: BERT model which you want to train
:param vocab_size: total word vocab size
:param train_dataloader: train dataset data loader
:param test_dataloader: test dataset data loader [can be None]
:param lr: learning rate of optimizer
:param betas: Adam optimizer betas
:param weight_decay: Adam optimizer weight decay param
:param with_cuda: traning with cuda
:param log_freq: logging frequency of the batch iteration
"""
# Setup cuda device for BERT training, argument -c, --cuda should be true
cuda_condition = torch.cuda.is_available() and with_cuda
self.device = torch.device("cuda:0" if cuda_condition else "cpu")
print("Device used = ", self.device)
# This BERT model will be saved every epoch
self.bert = bert
# Initialize the BERT Language Model, with BERT model
self.model = BERTSM(bert, vocab_size).to(self.device)
# Distributed GPU training if CUDA can detect more than 1 GPU
if with_cuda and torch.cuda.device_count() > 1:
print("Using %d GPUS for BERT" % torch.cuda.device_count())
self.model = nn.DataParallel(self.model, device_ids=cuda_devices)
# Setting the train and test data loader
self.train_data = train_dataloader
self.test_data = test_dataloader
# Setting the Adam optimizer with hyper-param
self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps)
# Using Negative Log Likelihood Loss function for predicting the masked_token
self.criterion = nn.NLLLoss(ignore_index=0)
self.log_freq = log_freq
self.same_student_prediction = same_student_prediction
self.workspace_name = workspace_name
self.save_model = False
self.avg_loss = 10000
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
def train(self, epoch):
self.iteration(epoch, self.train_data)
def test(self, epoch):
self.iteration(epoch, self.test_data, train=False)
def iteration(self, epoch, data_loader, train=True):
"""
loop over the data_loader for training or testing
if on train status, backward operation is activated
and also auto save the model every peoch
:param epoch: current epoch index
:param data_loader: torch.utils.data.DataLoader for iteration
:param train: boolean value of is train or test
:return: None
"""
str_code = "train" if train else "test"
code = "masked_prediction" if self.same_student_prediction else "masked"
self.log_file = f"{self.workspace_name}/logs/{code}/log_{str_code}_pretrained.txt"
bert_hidden_representations = []
if epoch == 0:
f = open(self.log_file, 'w')
f.close()
if not train:
self.avg_loss = 10000
# Setting the tqdm progress bar
data_iter = tqdm.tqdm(enumerate(data_loader),
desc="EP_%s:%d" % (str_code, epoch),
total=len(data_loader),
bar_format="{l_bar}{r_bar}")
avg_loss_mask = 0.0
total_correct_mask = 0
total_element_mask = 0
avg_loss_pred = 0.0
total_correct_pred = 0
total_element_pred = 0
avg_loss = 0.0
with open(self.log_file, 'a') as f:
sys.stdout = f
for i, data in data_iter:
# 0. batch_data will be sent into the device(GPU or cpu)
data = {key: value.to(self.device) for key, value in data.items()}
# 1. forward the next_sentence_prediction and masked_lm model
# next_sent_output, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"])
if self.same_student_prediction:
bert_hidden_rep, mask_lm_output, same_student_output = self.model.forward(data["bert_input"], data["segment_label"], self.same_student_prediction)
else:
bert_hidden_rep, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"], self.same_student_prediction)
embeddings = [h for h in bert_hidden_rep.cpu().detach().numpy()]
bert_hidden_representations.extend(embeddings)
# 2-2. NLLLoss of predicting masked token word
mask_loss = self.criterion(mask_lm_output.transpose(1, 2), data["bert_label"])
# 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure
if self.same_student_prediction:
# 2-1. NLL(negative log likelihood) loss of is_next classification result
same_student_loss = self.criterion(same_student_output, data["is_same_student"])
loss = same_student_loss + mask_loss
else:
loss = mask_loss
# 3. backward and optimization only in train
if train:
self.optim_schedule.zero_grad()
loss.backward()
self.optim_schedule.step_and_update_lr()
non_zero_mask = (data["bert_label"] != 0).float()
predictions = torch.argmax(mask_lm_output, dim=-1)
predicted_masked = predictions*non_zero_mask
mask_correct = ((data["bert_label"] == predicted_masked)*non_zero_mask).sum().item()
avg_loss_mask += loss.item()
total_correct_mask += mask_correct
total_element_mask += non_zero_mask.sum().item()
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss_mask / (i + 1),
"avg_acc_mask": total_correct_mask / total_element_mask * 100,
"loss": loss.item()
}
# next sentence prediction accuracy
if self.same_student_prediction:
correct = same_student_output.argmax(dim=-1).eq(data["is_same_student"]).sum().item()
avg_loss_pred += loss.item()
total_correct_pred += correct
total_element_pred += data["is_same_student"].nelement()
# correct = next_sent_output.argmax(dim=-1).eq(data["is_next"]).sum().item()
post_fix["avg_loss"] = avg_loss_pred / (i + 1)
post_fix["avg_acc_pred"] = total_correct_pred / total_element_pred * 100
post_fix["loss"] = loss.item()
avg_loss +=loss.item()
if i % self.log_freq == 0:
data_iter.write(str(post_fix))
# if not train and epoch > 20 :
# pickle.dump(mask_lm_output.cpu().detach().numpy(), open(f"logs/mask/mask_out_e{epoch}_{i}.pkl","wb"))
# pickle.dump(data["bert_label"].cpu().detach().numpy(), open(f"logs/mask/label_e{epoch}_{i}.pkl","wb"))
final_msg = {
"epoch": f"EP{epoch}_{str_code}",
"avg_loss": avg_loss / len(data_iter),
"total_masked_acc": total_correct_mask * 100.0 / total_element_mask
}
if self.same_student_prediction:
final_msg["total_prediction_acc"] = total_correct_pred * 100.0 / total_element_pred
print(final_msg)
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_masked_acc=", total_correct_mask * 100.0 / total_element_mask, "total_prediction_acc=", total_correct_pred * 100.0 / total_element_pred)
# else:
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_masked_acc=", total_correct_mask * 100.0 / total_element_mask)
# print("EP%d_%s, " % (epoch, str_code))
f.close()
sys.stdout = sys.__stdout__
self.save_model = False
if self.avg_loss > (avg_loss / len(data_iter)):
self.save_model = True
self.avg_loss = (avg_loss / len(data_iter))
# pickle.dump(bert_hidden_representations, open(f"embeddings/{code}/{str_code}_embeddings_{epoch}.pkl","wb"))
def save(self, epoch, file_path="output/bert_trained.model"):
"""
Saving the current BERT model on file_path
:param epoch: current epoch number
:param file_path: model output path which gonna be file_path+"ep%d" % epoch
:return: final_output_path
"""
output_path = file_path + ".ep%d" % epoch
torch.save(self.bert.cpu(), output_path)
self.bert.to(self.device)
print("EP:%d Model Saved on:" % epoch, output_path)
return output_path
class BERTFineTuneTrainer:
def __init__(self, bert: BERT, vocab_size: int,
train_dataloader: DataLoader, test_dataloader: DataLoader = None,
lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, num_labels=2):
"""
:param bert: BERT model which you want to train
:param vocab_size: total word vocab size
:param train_dataloader: train dataset data loader
:param test_dataloader: test dataset data loader [can be None]
:param lr: learning rate of optimizer
:param betas: Adam optimizer betas
:param weight_decay: Adam optimizer weight decay param
:param with_cuda: traning with cuda
:param log_freq: logging frequency of the batch iteration
"""
# Setup cuda device for BERT training, argument -c, --cuda should be true
cuda_condition = torch.cuda.is_available() and with_cuda
self.device = torch.device("cuda:0" if cuda_condition else "cpu")
print("Device used = ", self.device)
# This BERT model will be saved every epoch
self.bert = bert
# for param in self.bert.parameters():
# param.requires_grad = False
# Initialize the BERT Language Model, with BERT model
self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device)
# Distributed GPU training if CUDA can detect more than 1 GPU
if with_cuda and torch.cuda.device_count() > 1:
print("Using %d GPUS for BERT" % torch.cuda.device_count())
self.model = nn.DataParallel(self.model, device_ids=cuda_devices)
# Setting the train and test data loader
self.train_data = train_dataloader
self.test_data = test_dataloader
self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay, eps=1e-9)
# self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
if num_labels == 1:
self.criterion = nn.MSELoss()
elif num_labels == 2:
self.criterion = nn.CrossEntropyLoss()
elif num_labels > 2:
self.criterion = nn.BCEWithLogitsLoss()
self.ece_criterion = ECE().to(self.device)
self.log_freq = log_freq
self.workspace_name = workspace_name
self.save_model = False
self.avg_loss = 10000
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
def train(self, epoch):
self.iteration(epoch, self.train_data)
def test(self, epoch):
self.iteration(epoch, self.test_data, train=False)
def iteration(self, epoch, data_loader, train=True):
"""
loop over the data_loader for training or testing
if on train status, backward operation is activated
and also auto save the model every peoch
:param epoch: current epoch index
:param data_loader: torch.utils.data.DataLoader for iteration
:param train: boolean value of is train or test
:return: None
"""
str_code = "train" if train else "test"
self.log_file = f"{self.workspace_name}/logs/masked/log_{str_code}_FS_finetuned.txt"
if epoch == 0:
f = open(self.log_file, 'w')
f.close()
if not train:
self.avg_loss = 10000
# Setting the tqdm progress bar
data_iter = tqdm.tqdm(enumerate(data_loader),
desc="EP_%s:%d" % (str_code, epoch),
total=len(data_loader),
bar_format="{l_bar}{r_bar}")
avg_loss = 0.0
total_correct = 0
total_element = 0
plabels = []
tlabels = []
eval_accurate_nb = 0
nb_eval_examples = 0
logits_list = []
labels_list = []
if train:
self.model.train()
else:
self.model.eval()
with open(self.log_file, 'a') as f:
sys.stdout = f
for i, data in data_iter:
# 0. batch_data will be sent into the device(GPU or cpu)
data = {key: value.to(self.device) for key, value in data.items()}
if train:
h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"])
else:
with torch.no_grad():
h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"])
# print(logits, logits.shape)
logits_list.append(logits.cpu())
labels_list.append(data["progress_status"].cpu())
# print(">>>>>>>>>>>>", progress_output)
# print(f"{epoch}---nelement--- {data['progress_status'].nelement()}")
# print(data["progress_status"].shape, logits.shape)
progress_loss = self.criterion(logits, data["progress_status"])
loss = progress_loss
if torch.cuda.device_count() > 1:
loss = loss.mean()
# 3. backward and optimization only in train
if train:
self.optim.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optim.step()
# progress prediction accuracy
# correct = progress_output.argmax(dim=-1).eq(data["progress_status"]).sum().item()
probs = nn.LogSoftmax(dim=-1)(logits)
predicted_labels = torch.argmax(probs, dim=-1)
true_labels = torch.argmax(data["progress_status"], dim=-1)
plabels.extend(predicted_labels.cpu().numpy())
tlabels.extend(true_labels.cpu().numpy())
# print(">>>>>>>>>>>>>>", predicted_labels, true_labels)
# Compare predicted labels to true labels and calculate accuracy
correct = (predicted_labels == true_labels).sum().item()
avg_loss += loss.item()
total_correct += correct
total_element += true_labels.nelement()
if train:
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss / (i + 1),
"avg_acc": total_correct / total_element * 100,
"loss": loss.item()
}
else:
logits = logits.detach().cpu().numpy()
label_ids = data["progress_status"].to('cpu').numpy()
tmp_eval_nb = accurate_nb(logits, label_ids)
eval_accurate_nb += tmp_eval_nb
nb_eval_examples += label_ids.shape[0]
total_element += data["progress_status"].nelement()
# avg_loss += loss.item()
post_fix = {
"epoch": epoch,
"iter": i,
"avg_loss": avg_loss / (i + 1),
"avg_acc": tmp_eval_nb / total_element * 100,
"loss": loss.item()
}
if i % self.log_freq == 0:
data_iter.write(str(post_fix))
# precisions = precision_score(plabels, tlabels, average="weighted")
# recalls = recall_score(plabels, tlabels, average="weighted")
f1_scores = f1_score(plabels, tlabels, average="weighted")
if train:
final_msg = {
"epoch": f"EP{epoch}_{str_code}",
"avg_loss": avg_loss / len(data_iter),
"total_acc": total_correct * 100.0 / total_element,
# "precisions": precisions,
# "recalls": recalls,
"f1_scores": f1_scores
}
else:
eval_accuracy = eval_accurate_nb/nb_eval_examples
logits_ece = torch.cat(logits_list)
labels_ece = torch.cat(labels_list)
ece = self.ece_criterion(logits_ece, labels_ece).item()
final_msg = {
"epoch": f"EP{epoch}_{str_code}",
"eval_accuracy": eval_accuracy,
"ece": ece,
"avg_loss": avg_loss / len(data_iter),
# "precisions": precisions,
# "recalls": recalls,
"f1_scores": f1_scores
}
if self.save_model:
conf_hist = visualization.ConfidenceHistogram()
plt_test = conf_hist.plot(np.array(logits_ece), np.array(labels_ece), title= f"Confidence Histogram {epoch}")
plt_test.savefig(f"{self.workspace_name}/plots/confidence_histogram/FS/conf_histogram_test_{epoch}.png",bbox_inches='tight')
plt_test.close()
rel_diagram = visualization.ReliabilityDiagram()
plt_test_2 = rel_diagram.plot(np.array(logits_ece), np.array(labels_ece),title=f"Reliability Diagram {epoch}")
plt_test_2.savefig(f"{self.workspace_name}/plots/confidence_histogram/FS/rel_diagram_test_{epoch}.png",bbox_inches='tight')
plt_test_2.close()
print(final_msg)
# print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element)
f.close()
sys.stdout = sys.__stdout__
if train:
self.save_model = False
if self.avg_loss > (avg_loss / len(data_iter)):
self.save_model = True
self.avg_loss = (avg_loss / len(data_iter))
# plt_test.show()
# print("EP%d_%s, " % (epoch, str_code))
def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"):
"""
Saving the current BERT model on file_path
:param epoch: current epoch number
:param file_path: model output path which gonna be file_path+"ep%d" % epoch
:return: final_output_path
"""
output_path = file_path + ".ep%d" % epoch
torch.save(self.model.cpu(), output_path)
self.model.to(self.device)
print("EP:%d Model Saved on:" % epoch, output_path)
return output_path