astra / src /embedding.py
suryadev1's picture
v1
6a34fd4
raw
history blame
2.15 kB
import torch.nn as nn
import torch
import math
class TokenEmbedding(nn.Embedding):
def __init__(self, vocab_size, embed_size=512):
super().__init__(vocab_size, embed_size, padding_idx=0) # look at vocab_file
class SegmentEmbedding(nn.Embedding):
def __init__(self, embed_size=512):
super().__init__(3, embed_size, padding_idx=0)
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
return self.pe[:, :x.size(1)]
class BERTEmbedding(nn.Module):
"""
BERT Embedding which consisted of following features
1. TokenEmbedding : normal embedding matrix
2. PositionalEmbedding : adding positional information using sin, cos
2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2)
sum of all these features are output of BERTEmbedding
"""
def __init__(self, vocab_size, embed_size, dropout=0.1):
"""
:param vocab_size: total vocab size
:param embed_size: embedding size of token embedding
:param dropout: dropout rate
"""
super().__init__()
self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size)
self.position = PositionalEmbedding(d_model=self.token.embedding_dim)
self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim)
self.dropout = nn.Dropout(p=dropout)
self.embed_size = embed_size
def forward(self, sequence, segment_label):
x = self.token(sequence) + self.position(sequence) + self.segment(segment_label)
return self.dropout(x)