|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler |
|
from keras.preprocessing.sequence import pad_sequences |
|
from sklearn.model_selection import train_test_split |
|
from transformers import BertTokenizer, BertConfig |
|
from transformers import AdamW, BertForSequenceClassification, get_linear_schedule_with_warmup |
|
from tqdm import tqdm, trange |
|
import pandas as pd |
|
import io |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from torch.autograd.gradcheck import zero_gradients |
|
import argparse |
|
import random |
|
from utils import * |
|
import os |
|
|
|
|
|
class softCrossEntropy(nn.Module): |
|
def __init__(self, reduce=True): |
|
super(softCrossEntropy, self).__init__() |
|
self.reduce = reduce |
|
return |
|
|
|
def forward(self, inputs, target): |
|
""" |
|
:param inputs: predictions |
|
:param target: target labels in vector form |
|
:return: loss |
|
""" |
|
log_likelihood = -F.log_softmax(inputs, dim=1) |
|
sample_num, class_num = target.shape |
|
if self.reduce: |
|
loss = torch.sum(torch.mul(log_likelihood, target)) / sample_num |
|
else: |
|
loss = torch.sum(torch.mul(log_likelihood, target), 1) |
|
|
|
return loss |
|
|
|
|
|
def one_hot_tensor(y_batch_tensor, num_classes, device): |
|
y_tensor = torch.FloatTensor(y_batch_tensor.size(0), num_classes).fill_(0).to(device) |
|
y_tensor[np.arange(len(y_batch_tensor)), y_batch_tensor] = 1.0 |
|
return y_tensor |
|
|
|
class on_manifold_samples(object): |
|
def __init__(self, epsilon_x=1e-4, epsilon_y=0.1): |
|
super(on_manifold_samples, self).__init__() |
|
self.epsilon_x = epsilon_x |
|
self.epsilon_y = epsilon_y |
|
|
|
|
|
def generate(self, input_ids, input_mask, y, model): |
|
model.eval() |
|
with torch.no_grad(): |
|
if torch.cuda.device_count() > 1: |
|
embedding = model.module.get_input_embeddings()(input_ids) |
|
else: |
|
embedding = model.get_input_embeddings()(input_ids) |
|
|
|
x = embedding.detach() |
|
|
|
inv_index = torch.arange(x.size(0) - 1, -1, -1).long() |
|
x_tilde = x[inv_index, :].detach() |
|
y_tilde = y[inv_index, :] |
|
x_init = x.detach() + torch.zeros_like(x).uniform_(-self.epsilon_x, self.epsilon_x) |
|
|
|
x_init.requires_grad_() |
|
zero_gradients(x_init) |
|
if x_init.grad is not None: |
|
x_init.grad.data.fill_(0) |
|
|
|
fea_b = model(inputs_embeds=x_init, token_type_ids=None, attention_mask=input_mask)[1][-1] |
|
fea_b = torch.mean(fea_b, 1) |
|
with torch.no_grad(): |
|
fea_t = model(inputs_embeds=x_tilde, token_type_ids=None, attention_mask=input_mask)[1][-1] |
|
fea_t = torch.mean(fea_t, 1) |
|
|
|
Dx = cos_dist(fea_b, fea_t) |
|
model.zero_grad() |
|
if torch.cuda.device_count() > 1: |
|
Dx = Dx.mean() |
|
Dx.backward() |
|
|
|
x_prime = x_init.data - self.epsilon_x * torch.sign(x_init.grad.data) |
|
x_prime = torch.min(torch.max(x_prime, embedding - self.epsilon_x), embedding + self.epsilon_x) |
|
|
|
y_prime = (1 - self.epsilon_y) * y + self.epsilon_y * y_tilde |
|
model.train() |
|
return x_prime.detach(), y_prime.detach() |
|
|
|
class off_manifold_samples(object): |
|
def __init__(self, eps=0.001, rand_init='n'): |
|
super(off_manifold_samples, self).__init__() |
|
self.eps = eps |
|
self.rand_init = rand_init |
|
|
|
|
|
def generate(self, model, input_ids, input_mask, labels): |
|
model.eval() |
|
ny = labels |
|
with torch.no_grad(): |
|
if torch.cuda.device_count() > 1: |
|
embedding = model.module.get_input_embeddings()(input_ids) |
|
else: |
|
embedding = model.get_input_embeddings()(input_ids) |
|
|
|
input_embedding = embedding.detach() |
|
|
|
if self.rand_init == 'y': |
|
input_embedding = input_embedding + torch.zeros_like(input_embedding).uniform_(-self.eps, self.eps) |
|
input_embedding.requires_grad = True |
|
|
|
zero_gradients(input_embedding) |
|
if input_embedding.grad is not None: |
|
input_embedding.grad.data.fill_(0) |
|
|
|
cost = model(inputs_embeds=input_embedding, token_type_ids=None, attention_mask=input_mask, labels=ny)[0] |
|
if torch.cuda.device_count() > 1: |
|
cost = cost.mean() |
|
model.zero_grad() |
|
cost.backward() |
|
off_samples = input_embedding + self.eps*torch.sign(input_embedding.grad.data) |
|
off_samples = torch.min(torch.max(off_samples, embedding - self.eps), embedding + self.eps) |
|
|
|
model.train() |
|
return off_samples.detach() |
|
|
|
|
|
|
|
class ECE(nn.Module): |
|
|
|
def __init__(self, n_bins=15): |
|
""" |
|
n_bins (int): number of confidence interval bins |
|
""" |
|
super(ECE, self).__init__() |
|
bin_boundaries = torch.linspace(0, 1, n_bins + 1) |
|
self.bin_lowers = bin_boundaries[:-1] |
|
self.bin_uppers = bin_boundaries[1:] |
|
|
|
def forward(self, logits, labels): |
|
softmaxes = F.softmax(logits, dim=1) |
|
confidences, predictions = torch.max(softmaxes, 1) |
|
accuracies = predictions.eq(labels) |
|
|
|
ece = torch.zeros(1, device=logits.device) |
|
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): |
|
|
|
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) |
|
prop_in_bin = in_bin.float().mean() |
|
if prop_in_bin.item() > 0: |
|
accuracy_in_bin = accuracies[in_bin].float().mean() |
|
avg_confidence_in_bin = confidences[in_bin].mean() |
|
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin |
|
|
|
return ece |
|
|
|
|
|
def accurate_nb(preds, labels): |
|
pred_flat = np.argmax(preds, axis=1).flatten() |
|
labels_flat = labels.flatten() |
|
return np.sum(pred_flat == labels_flat) |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.") |
|
parser.add_argument("--eval_batch_size", default=128, type=int, help="Batch size for training.") |
|
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.") |
|
parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.") |
|
parser.add_argument("--dataset", default='20news-15', type=str, help="dataset") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") |
|
parser.add_argument("--beta_on", default=1., type=float, help="Weight of on manifold reg") |
|
parser.add_argument("--beta_off", default=1., type=float, help="Weight of off manifold reg") |
|
parser.add_argument("--eps_in", default=1e-4, type=float, help="Perturbation size of on-manifold regularizer") |
|
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label") |
|
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training") |
|
parser.add_argument('--saved_dataset', type=str, default='n', help='whether save the preprocessed pt file of the dataset') |
|
|
|
args = parser.parse_args() |
|
print(args) |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
args.device = device |
|
set_seed(args) |
|
|
|
ece_criterion = ECE().to(args.device) |
|
soft_ce = softCrossEntropy() |
|
|
|
on_manifold = on_manifold_samples(epsilon_x=args.eps_in, epsilon_y=args.eps_y) |
|
off_manifold = off_manifold_samples(eps=args.eps_out) |
|
|
|
|
|
|
|
if args.saved_dataset == 'n': |
|
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset) |
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) |
|
|
|
train_input_ids = [] |
|
val_input_ids = [] |
|
test_input_ids = [] |
|
|
|
if args.dataset == '20news' or args.dataset == '20news-15': |
|
MAX_LEN = 150 |
|
else: |
|
MAX_LEN = 256 |
|
|
|
for sent in train_sentences: |
|
|
|
|
|
|
|
|
|
|
|
encoded_sent = tokenizer.encode( |
|
sent, |
|
add_special_tokens = True, |
|
|
|
|
|
|
|
max_length = MAX_LEN, |
|
|
|
) |
|
|
|
train_input_ids.append(encoded_sent) |
|
|
|
|
|
for sent in val_sentences: |
|
encoded_sent = tokenizer.encode( |
|
sent, |
|
add_special_tokens = True, |
|
max_length = MAX_LEN, |
|
) |
|
val_input_ids.append(encoded_sent) |
|
|
|
for sent in test_sentences: |
|
encoded_sent = tokenizer.encode( |
|
sent, |
|
add_special_tokens = True, |
|
max_length = MAX_LEN, |
|
) |
|
test_input_ids.append(encoded_sent) |
|
|
|
|
|
train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") |
|
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") |
|
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") |
|
|
|
train_attention_masks = [] |
|
val_attention_masks = [] |
|
test_attention_masks = [] |
|
|
|
|
|
for seq in train_input_ids: |
|
seq_mask = [float(i>0) for i in seq] |
|
train_attention_masks.append(seq_mask) |
|
for seq in val_input_ids: |
|
seq_mask = [float(i>0) for i in seq] |
|
val_attention_masks.append(seq_mask) |
|
for seq in test_input_ids: |
|
seq_mask = [float(i>0) for i in seq] |
|
test_attention_masks.append(seq_mask) |
|
|
|
|
|
|
|
train_inputs = torch.tensor(train_input_ids) |
|
validation_inputs = torch.tensor(val_input_ids) |
|
train_labels = torch.tensor(train_labels) |
|
validation_labels = torch.tensor(val_labels) |
|
train_masks = torch.tensor(train_attention_masks) |
|
validation_masks = torch.tensor(val_attention_masks) |
|
test_inputs = torch.tensor(test_input_ids) |
|
test_labels = torch.tensor(test_labels) |
|
test_masks = torch.tensor(test_attention_masks) |
|
|
|
|
|
|
|
train_data = TensorDataset(train_inputs, train_masks, train_labels) |
|
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels) |
|
prediction_data = TensorDataset(test_inputs, test_masks, test_labels) |
|
|
|
dataset_dir = 'dataset/{}'.format(args.dataset) |
|
if not os.path.exists(dataset_dir): |
|
os.makedirs(dataset_dir) |
|
|
|
torch.save(train_data, dataset_dir+'/train.pt') |
|
torch.save(validation_data, dataset_dir+'/val.pt') |
|
torch.save(prediction_data, dataset_dir+'/test.pt') |
|
|
|
else: |
|
dataset_dir = 'dataset/{}'.format(args.dataset) |
|
train_data = torch.load(dataset_dir+'/train.pt') |
|
validation_data = torch.load(dataset_dir+'/val.pt') |
|
prediction_data = torch.load(dataset_dir+'/test.pt') |
|
|
|
|
|
train_sampler = RandomSampler(train_data) |
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) |
|
|
|
validation_sampler = SequentialSampler(validation_data) |
|
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size) |
|
|
|
prediction_sampler = SequentialSampler(prediction_data) |
|
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size) |
|
|
|
|
|
|
|
if args.dataset == '20news': |
|
num_labels = 20 |
|
elif args.dataset == '20news-15': |
|
num_labels = 15 |
|
elif args.dataset == 'wos-in': |
|
num_labels = 100 |
|
elif args.dataset == 'wos': |
|
num_labels = 134 |
|
|
|
print(num_labels) |
|
|
|
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True) |
|
if torch.cuda.device_count() > 1: |
|
print("Let's use", torch.cuda.device_count(), "GPUs!") |
|
|
|
model = nn.DataParallel(model) |
|
model.to(args.device) |
|
|
|
|
|
|
|
param_optimizer = list(model.named_parameters()) |
|
no_decay = ['bias', 'gamma', 'beta'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], |
|
'weight_decay_rate': args.weight_decay}, |
|
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], |
|
'weight_decay_rate': 0.0} |
|
] |
|
|
|
optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9) |
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) |
|
t_total = len(train_dataloader) * args.epochs |
|
|
|
|
|
best_val = -np.inf |
|
|
|
for epoch in trange(args.epochs, desc="Epoch"): |
|
|
|
|
|
|
|
tr_loss1, tr_loss2 = 0, 0 |
|
nb_tr_examples, nb_tr_steps = 0, 0 |
|
model.train() |
|
|
|
|
|
for step, batch in enumerate(train_dataloader): |
|
|
|
|
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
b_input_ids, b_input_mask, b_labels = batch |
|
|
|
|
|
targets_onehot = one_hot_tensor(b_labels, num_labels, args.device) |
|
on_manifold_x, on_manifold_y = on_manifold.generate(b_input_ids, b_input_mask, targets_onehot, model) |
|
model.train() |
|
|
|
on_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=on_manifold_x)[0] |
|
loss_on = soft_ce(on_manifold_logits, on_manifold_y) |
|
|
|
|
|
off_manifold_x = off_manifold.generate(model, b_input_ids, b_input_mask, b_labels) |
|
|
|
model.train() |
|
|
|
off_manifold_logits = model(token_type_ids=None, attention_mask=b_input_mask, inputs_embeds=off_manifold_x)[0] |
|
off_manifold_prob = F.softmax(off_manifold_logits, dim=1) |
|
loss_off = -torch.mean(-torch.sum(off_manifold_prob*torch.log(off_manifold_prob), dim=1)) |
|
loss_reg = args.beta_on*loss_on + args.beta_off*loss_off |
|
|
|
if torch.cuda.device_count() > 1: |
|
loss_reg = loss_reg.mean() |
|
|
|
|
|
optimizer.zero_grad() |
|
loss_reg.backward() |
|
|
|
|
|
loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0] |
|
if torch.cuda.device_count() > 1: |
|
loss_ce = loss_ce.mean() |
|
loss_ce.backward() |
|
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) |
|
|
|
|
|
optimizer.step() |
|
|
|
|
|
tr_loss1 += loss_ce.item() |
|
tr_loss2 += loss_reg.item() |
|
|
|
nb_tr_examples += b_input_ids.size(0) |
|
nb_tr_steps += 1 |
|
|
|
print("Train cross entropy loss: {} | reg loss: {}".format(tr_loss1/nb_tr_steps, tr_loss2/nb_tr_steps)) |
|
|
|
|
|
|
|
|
|
|
|
model.eval() |
|
|
|
eval_accurate_nb = 0 |
|
nb_eval_examples = 0 |
|
|
|
|
|
for batch in validation_dataloader: |
|
|
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
b_input_ids, b_input_mask, b_labels = batch |
|
|
|
with torch.no_grad(): |
|
|
|
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] |
|
|
|
logits = logits.detach().cpu().numpy() |
|
label_ids = b_labels.to('cpu').numpy() |
|
|
|
tmp_eval_nb = accurate_nb(logits, label_ids) |
|
|
|
eval_accurate_nb += tmp_eval_nb |
|
nb_eval_examples += label_ids.shape[0] |
|
eval_accuracy = eval_accurate_nb/nb_eval_examples |
|
print("Validation Accuracy: {}".format(eval_accuracy)) |
|
|
|
scheduler.step(eval_accuracy) |
|
|
|
|
|
if eval_accuracy > best_val: |
|
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.dataset, args.seed, args.eps_in, args.eps_y, args.eps_out) |
|
|
|
output_dir = './model_save/{}'.format(dirname) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
print("Saving model to %s" % output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
model_to_save.save_pretrained(output_dir) |
|
|
|
|
|
best_val = eval_accuracy |
|
|
|
|
|
|
|
model.eval() |
|
|
|
predictions , true_labels = [], [] |
|
eval_accurate_nb = 0 |
|
nb_test_examples = 0 |
|
logits_list = [] |
|
labels_list = [] |
|
|
|
for batch in prediction_dataloader: |
|
|
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
b_input_ids, b_input_mask, b_labels = batch |
|
|
|
with torch.no_grad(): |
|
|
|
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] |
|
logits_list.append(logits) |
|
labels_list.append(b_labels) |
|
|
|
logits = logits.detach().cpu().numpy() |
|
label_ids = b_labels.to('cpu').numpy() |
|
|
|
tmp_eval_nb = accurate_nb(logits, label_ids) |
|
eval_accurate_nb += tmp_eval_nb |
|
nb_test_examples += label_ids.shape[0] |
|
|
|
|
|
predictions.append(logits) |
|
true_labels.append(label_ids) |
|
|
|
print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples)) |
|
|
|
logits_ece = torch.cat(logits_list) |
|
labels_ece = torch.cat(labels_list) |
|
ece = ece_criterion(logits_ece, labels_ece).item() |
|
|
|
print('ECE on test data: {}'.format(ece)) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |