|
import torch |
|
from torch import nn, optim |
|
from torch.nn import functional as F |
|
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler |
|
import numpy as np |
|
from keras.preprocessing.sequence import pad_sequences |
|
from transformers import BertTokenizer |
|
from transformers import BertForSequenceClassification |
|
import random |
|
from sklearn.metrics import f1_score |
|
from utils import * |
|
import os |
|
import argparse |
|
|
|
|
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
class ModelWithTemperature(nn.Module): |
|
""" |
|
A thin decorator, which wraps a model with temperature scaling |
|
model (nn.Module): |
|
A classification neural network |
|
NB: Output of the neural network should be the classification logits, |
|
NOT the softmax (or log softmax)! |
|
""" |
|
def __init__(self, model): |
|
super(ModelWithTemperature, self).__init__() |
|
self.model = model |
|
self.temperature = nn.Parameter(torch.ones(1) * 1.5) |
|
|
|
def forward(self, input_ids, token_type_ids, attention_mask): |
|
logits = self.model(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0] |
|
return self.temperature_scale(logits) |
|
|
|
def temperature_scale(self, logits): |
|
""" |
|
Perform temperature scaling on logits |
|
""" |
|
|
|
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1)) |
|
return logits / temperature |
|
|
|
|
|
def set_temperature(self, valid_loader, args): |
|
""" |
|
Tune the tempearature of the model (using the validation set). |
|
We're going to set it to optimize NLL. |
|
valid_loader (DataLoader): validation set loader |
|
""" |
|
nll_criterion = nn.CrossEntropyLoss() |
|
ece_criterion = ECE().to(args.device) |
|
|
|
|
|
logits_list = [] |
|
labels_list = [] |
|
with torch.no_grad(): |
|
for step, batch in enumerate(valid_loader): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
b_input_ids, b_input_mask, b_labels = batch |
|
logits = self.model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] |
|
logits_list.append(logits) |
|
labels_list.append(b_labels) |
|
logits = torch.cat(logits_list) |
|
labels = torch.cat(labels_list) |
|
|
|
|
|
before_temperature_nll = nll_criterion(logits, labels).item() |
|
before_temperature_ece = ece_criterion(logits, labels).item() |
|
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece)) |
|
|
|
|
|
optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50) |
|
|
|
def eval(): |
|
loss = nll_criterion(self.temperature_scale(logits), labels) |
|
loss.backward() |
|
return loss |
|
optimizer.step(eval) |
|
|
|
|
|
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item() |
|
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item() |
|
print('Optimal temperature: %.3f' % self.temperature.item()) |
|
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece)) |
|
|
|
return self |
|
|
|
class ECE(nn.Module): |
|
|
|
def __init__(self, n_bins=15): |
|
""" |
|
n_bins (int): number of confidence interval bins |
|
""" |
|
super(ECE, self).__init__() |
|
bin_boundaries = torch.linspace(0, 1, n_bins + 1) |
|
self.bin_lowers = bin_boundaries[:-1] |
|
self.bin_uppers = bin_boundaries[1:] |
|
|
|
def forward(self, logits, labels): |
|
softmaxes = F.softmax(logits, dim=1) |
|
confidences, predictions = torch.max(softmaxes, 1) |
|
accuracies = predictions.eq(labels) |
|
|
|
ece = torch.zeros(1, device=logits.device) |
|
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): |
|
|
|
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) |
|
prop_in_bin = in_bin.float().mean() |
|
if prop_in_bin.item() > 0: |
|
accuracy_in_bin = accuracies[in_bin].float().mean() |
|
avg_confidence_in_bin = confidences[in_bin].mean() |
|
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin |
|
|
|
return ece |
|
|
|
|
|
class ECE_v2(nn.Module): |
|
def __init__(self, n_bins=15): |
|
""" |
|
n_bins (int): number of confidence interval bins |
|
""" |
|
super(ECE_v2, self).__init__() |
|
bin_boundaries = torch.linspace(0, 1, n_bins + 1) |
|
self.bin_lowers = bin_boundaries[:-1] |
|
self.bin_uppers = bin_boundaries[1:] |
|
|
|
def forward(self, softmaxes, labels): |
|
confidences, predictions = torch.max(softmaxes, 1) |
|
accuracies = predictions.eq(labels) |
|
ece = torch.zeros(1, device=softmaxes.device) |
|
|
|
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): |
|
|
|
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) |
|
prop_in_bin = in_bin.float().mean() |
|
if prop_in_bin.item() > 0: |
|
accuracy_in_bin = accuracies[in_bin].float().mean() |
|
avg_confidence_in_bin = confidences[in_bin].mean() |
|
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin |
|
return ece |
|
|
|
def accurate_nb(preds, labels): |
|
pred_flat = np.argmax(preds, axis=1).flatten() |
|
labels_flat = labels.flatten() |
|
return np.sum(pred_flat == labels_flat) |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
|
|
def apply_dropout(m): |
|
if type(m) == nn.Dropout: |
|
m.train() |
|
|
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description='Test code - measure the detection peformance') |
|
parser.add_argument('--eva_iter', default=1, type=int, help='number of passes for mc-dropout when evaluation') |
|
parser.add_argument('--model', type=str, choices=['base', 'manifold-smoothing', 'mc-dropout','temperature'], default='base') |
|
parser.add_argument('--seed', type=int, default=0, help='random seed for test') |
|
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.") |
|
parser.add_argument('--index', type=int, default=0, help='random seed you used during training') |
|
parser.add_argument('--in_dataset', required=True, help='target dataset: 20news') |
|
parser.add_argument('--out_dataset', required=True, help='out-of-dist dataset') |
|
parser.add_argument('--eval_batch_size', type=int, default=32) |
|
parser.add_argument('--saved_dataset', type=str, default='n') |
|
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training") |
|
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label") |
|
parser.add_argument('--eps_in', default=0.0001, type=float, help="Perturbation size of in-domain adversarial training") |
|
|
|
args = parser.parse_args() |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
args.device = device |
|
set_seed(args) |
|
|
|
outf = 'test/'+args.model+'-'+str(args.index) |
|
if not os.path.isdir(outf): |
|
os.makedirs(outf) |
|
|
|
if args.model == 'base': |
|
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index) |
|
pretrained_dir = './model_save/{}'.format(dirname) |
|
|
|
model = BertForSequenceClassification.from_pretrained(pretrained_dir) |
|
model.to(args.device) |
|
print('Load Tekenizer') |
|
|
|
elif args.model == 'mc-dropout': |
|
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index) |
|
pretrained_dir = './model_save/{}'.format(dirname) |
|
|
|
model = BertForSequenceClassification.from_pretrained(pretrained_dir) |
|
model.to(args.device) |
|
|
|
elif args.model == 'temperature': |
|
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index) |
|
pretrained_dir = './model_save/{}'.format(dirname) |
|
orig_model = BertForSequenceClassification.from_pretrained(pretrained_dir) |
|
orig_model.to(args.device) |
|
model = ModelWithTemperature(orig_model) |
|
model.to(args.device) |
|
|
|
elif args.model == 'manifold-smoothing': |
|
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.in_dataset, args.index, args.eps_in, args.eps_y, args.eps_out) |
|
print(dirname) |
|
pretrained_dir = './model_save/{}'.format(dirname) |
|
model = BertForSequenceClassification.from_pretrained(pretrained_dir) |
|
model.to(args.device) |
|
|
|
|
|
if args.saved_dataset == 'n': |
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) |
|
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.in_dataset) |
|
_, _, nt_test_sentences, _, _, nt_test_labels = load_dataset(args.out_dataset) |
|
|
|
val_input_ids = [] |
|
test_input_ids = [] |
|
nt_test_input_ids = [] |
|
|
|
if args.in_dataset == '20news' or args.in_dataset == '20news-15': |
|
MAX_LEN = 150 |
|
else: |
|
MAX_LEN = 256 |
|
|
|
for sent in val_sentences: |
|
encoded_sent = tokenizer.encode( |
|
sent, |
|
add_special_tokens = True, |
|
truncation= True, |
|
max_length = MAX_LEN, |
|
|
|
) |
|
|
|
val_input_ids.append(encoded_sent) |
|
|
|
|
|
for sent in test_sentences: |
|
encoded_sent = tokenizer.encode( |
|
sent, |
|
add_special_tokens = True, |
|
truncation= True, |
|
max_length = MAX_LEN, |
|
|
|
) |
|
|
|
test_input_ids.append(encoded_sent) |
|
|
|
for sent in nt_test_sentences: |
|
encoded_sent = tokenizer.encode( |
|
sent, |
|
add_special_tokens = True, |
|
truncation= True, |
|
max_length = MAX_LEN, |
|
) |
|
nt_test_input_ids.append(encoded_sent) |
|
|
|
|
|
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") |
|
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") |
|
nt_test_input_ids = pad_sequences(nt_test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") |
|
|
|
val_attention_masks = [] |
|
test_attention_masks = [] |
|
nt_test_attention_masks = [] |
|
|
|
for seq in val_input_ids: |
|
seq_mask = [float(i>0) for i in seq] |
|
val_attention_masks.append(seq_mask) |
|
for seq in test_input_ids: |
|
seq_mask = [float(i>0) for i in seq] |
|
test_attention_masks.append(seq_mask) |
|
for seq in nt_test_input_ids: |
|
seq_mask = [float(i>0) for i in seq] |
|
nt_test_attention_masks.append(seq_mask) |
|
|
|
|
|
val_inputs = torch.tensor(val_input_ids) |
|
val_labels = torch.tensor(val_labels) |
|
val_masks = torch.tensor(val_attention_masks) |
|
|
|
test_inputs = torch.tensor(test_input_ids) |
|
test_labels = torch.tensor(test_labels) |
|
test_masks = torch.tensor(test_attention_masks) |
|
|
|
nt_test_inputs = torch.tensor(nt_test_input_ids) |
|
nt_test_labels = torch.tensor(nt_test_labels) |
|
nt_test_masks = torch.tensor(nt_test_attention_masks) |
|
|
|
val_data = TensorDataset(val_inputs, val_masks, val_labels) |
|
test_data = TensorDataset(test_inputs, test_masks, test_labels) |
|
nt_test_data = TensorDataset(nt_test_inputs, nt_test_masks, nt_test_labels) |
|
|
|
dataset_dir = 'dataset/test' |
|
if not os.path.exists(dataset_dir): |
|
os.makedirs(dataset_dir) |
|
torch.save(val_data, dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset)) |
|
torch.save(test_data, dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset)) |
|
torch.save(nt_test_data, dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset)) |
|
|
|
else: |
|
dataset_dir = 'dataset/test' |
|
val_data = torch.load(dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset)) |
|
test_data = torch.load(dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset)) |
|
nt_test_data = torch.load(dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size) |
|
|
|
nt_test_sampler = SequentialSampler(nt_test_data) |
|
nt_test_dataloader = DataLoader(nt_test_data, sampler=nt_test_sampler, batch_size=args.eval_batch_size) |
|
val_sampler = SequentialSampler(val_data) |
|
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=args.eval_batch_size) |
|
|
|
if args.model == 'temperature': |
|
model.set_temperature(val_dataloader, args) |
|
|
|
model.eval() |
|
|
|
if args.model == 'mc-dropout': |
|
model.apply(apply_dropout) |
|
|
|
correct = 0 |
|
total = 0 |
|
output_list = [] |
|
labels_list = [] |
|
|
|
|
|
with torch.no_grad(): |
|
for step, batch in enumerate(val_dataloader): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
b_input_ids, b_input_mask, b_labels = batch |
|
total += b_labels.shape[0] |
|
batch_output = 0 |
|
for j in range(args.eva_iter): |
|
if args.model == 'temperature': |
|
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) |
|
else: |
|
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] |
|
batch_output = batch_output + F.softmax(current_batch, dim=1) |
|
batch_output = batch_output/args.eva_iter |
|
output_list.append(batch_output) |
|
labels_list.append(b_labels) |
|
score, predicted = batch_output.max(1) |
|
correct += predicted.eq(b_labels).sum().item() |
|
|
|
|
|
val_eval_accuracy = correct/total |
|
print("Val Accuracy: {}".format(val_eval_accuracy)) |
|
ece_criterion = ECE_v2().to(args.device) |
|
softmaxes_ece = torch.cat(output_list) |
|
labels_ece = torch.cat(labels_list) |
|
val_ece = ece_criterion(softmaxes_ece, labels_ece).item() |
|
print('ECE on Val data: {}'.format(val_ece)) |
|
|
|
|
|
correct = 0 |
|
total = 0 |
|
output_list = [] |
|
labels_list = [] |
|
predict_list = [] |
|
true_list = [] |
|
true_list_ood = [] |
|
predict_mis = [] |
|
predict_in = [] |
|
score_list = [] |
|
correct_index_all = [] |
|
|
|
with torch.no_grad(): |
|
for step, batch in enumerate(test_dataloader): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
b_input_ids, b_input_mask, b_labels = batch |
|
total += b_labels.shape[0] |
|
batch_output = 0 |
|
for j in range(args.eva_iter): |
|
if args.model == 'temperature': |
|
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) |
|
else: |
|
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] |
|
batch_output = batch_output + F.softmax(current_batch, dim=1) |
|
batch_output = batch_output/args.eva_iter |
|
output_list.append(batch_output) |
|
labels_list.append(b_labels) |
|
score, predicted = batch_output.max(1) |
|
|
|
correct += predicted.eq(b_labels).sum().item() |
|
|
|
correct_index = (predicted == b_labels) |
|
correct_index_all.append(correct_index) |
|
score_list.append(score) |
|
|
|
|
|
eval_accuracy = correct/total |
|
print("Test Accuracy: {}".format(eval_accuracy)) |
|
|
|
|
|
ece_criterion = ECE_v2().to(args.device) |
|
softmaxes_ece = torch.cat(output_list) |
|
labels_ece = torch.cat(labels_list) |
|
ece = ece_criterion(softmaxes_ece, labels_ece).item() |
|
print('ECE on Test data: {}'.format(ece)) |
|
|
|
|
|
score_in_array = torch.cat(score_list) |
|
|
|
correct_array = torch.cat(correct_index_all) |
|
label_array = torch.cat(labels_list) |
|
|
|
|
|
predict_ood = [] |
|
score_ood_list = [] |
|
true_list_ood = [] |
|
with torch.no_grad(): |
|
for step, batch in enumerate(nt_test_dataloader): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
b_input_ids, b_input_mask, b_labels = batch |
|
batch_output = 0 |
|
for j in range(args.eva_iter): |
|
if args.model == 'temperature': |
|
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) |
|
else: |
|
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] |
|
batch_output = batch_output + F.softmax(current_batch, dim=1) |
|
batch_output = batch_output/args.eva_iter |
|
score_out, _ = batch_output.max(1) |
|
|
|
score_ood_list.append(score_out) |
|
|
|
score_ood_array = torch.cat(score_ood_list) |
|
|
|
|
|
|
|
label_array = label_array.cpu().numpy() |
|
score_ood_array = score_ood_array.cpu().numpy() |
|
score_in_array = score_in_array.cpu().numpy() |
|
correct_array = correct_array.cpu().numpy() |
|
|
|
|
|
|
|
|
|
|
|
predict_o = np.zeros(len(score_in_array)+len(score_ood_array)) |
|
true_o = np.ones(len(score_in_array)+len(score_ood_array)) |
|
true_o[:len(score_in_array)] = 0 |
|
true_mis = np.ones(len(score_in_array)) |
|
true_mis[correct_array] = 0 |
|
predict_mis = np.zeros(len(score_in_array)) |
|
|
|
|
|
|
|
ood_sum = 0 |
|
mis_sum = 0 |
|
|
|
ood_sum_list = [] |
|
mis_sum_list = [] |
|
|
|
|
|
stop_points = [0.50, 1.] |
|
|
|
for threshold in np.arange(0., 1.01, 0.02): |
|
predict_ood_index1 = (score_in_array < threshold) |
|
predict_ood_index2 = (score_ood_array < threshold) |
|
predict_ood_index = np.concatenate((predict_ood_index1, predict_ood_index2), axis=0) |
|
predict_o[predict_ood_index] = 1 |
|
predict_mis[score_in_array<threshold] = 1 |
|
|
|
ood = f1_score(true_o, predict_o, average='binary') |
|
mis = f1_score(true_mis, predict_mis, average='binary') |
|
|
|
|
|
ood_sum += ood*0.02 |
|
mis_sum += mis*0.02 |
|
|
|
if threshold in stop_points: |
|
ood_sum_list.append(ood_sum) |
|
mis_sum_list.append(mis_sum) |
|
|
|
for i in range(len(stop_points)): |
|
print('OOD detection, NBAUCC {}: {}'.format(stop_points[i], ood_sum_list[i]/stop_points[i])) |
|
print('misclassification detection, NBAUCC {}: {}'.format(stop_points[i], mis_sum_list[i]/stop_points[i])) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|