|
import time |
|
import pandas as pd |
|
|
|
import sys |
|
|
|
class DataPreprocessor: |
|
def __init__(self, input_file_path): |
|
self.input_file_path = input_file_path |
|
self.unique_students = None |
|
self.unique_problems = None |
|
self.unique_prob_hierarchy = None |
|
self.unique_steps = None |
|
self.unique_kcs = None |
|
|
|
def analyze_dataset(self): |
|
file_iterator = self.load_file_iterator() |
|
|
|
start_time = time.time() |
|
self.unique_students = {"st"} |
|
self.unique_problems = {"pr"} |
|
self.unique_prob_hierarchy = {"ph"} |
|
self.unique_kcs = {"kc"} |
|
for chunk_data in file_iterator: |
|
for student_id, std_groups in chunk_data.groupby('Anon Student Id'): |
|
self.unique_students.update({student_id}) |
|
prob_hierarchy = std_groups.groupby('Level (Workspace Id)') |
|
for hierarchy, hierarchy_groups in prob_hierarchy: |
|
self.unique_prob_hierarchy.update({hierarchy}) |
|
prob_name = hierarchy_groups.groupby('Problem Name') |
|
for problem_name, prob_name_groups in prob_name: |
|
self.unique_problems.update({problem_name}) |
|
sub_skills = prob_name_groups['KC Model(MATHia)'] |
|
for a in sub_skills: |
|
if str(a) != "nan": |
|
temp = a.split("~~") |
|
for kc in temp: |
|
self.unique_kcs.update({kc}) |
|
self.unique_students.remove("st") |
|
self.unique_problems.remove("pr") |
|
self.unique_prob_hierarchy.remove("ph") |
|
self.unique_kcs.remove("kc") |
|
end_time = time.time() |
|
print("Time Taken to analyze dataset = ", end_time - start_time) |
|
print("Length of unique students->", len(self.unique_students)) |
|
print("Length of unique problems->", len(self.unique_problems)) |
|
print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy)) |
|
print("Length of Unique Knowledge components ->", len(self.unique_kcs)) |
|
|
|
def analyze_dataset_by_section(self, workspace_name): |
|
file_iterator = self.load_file_iterator() |
|
|
|
start_time = time.time() |
|
self.unique_students = {"st"} |
|
self.unique_problems = {"pr"} |
|
self.unique_prob_hierarchy = {"ph"} |
|
self.unique_steps = {"s"} |
|
self.unique_kcs = {"kc"} |
|
|
|
|
|
for chunk_data in file_iterator: |
|
for student_id, std_groups in chunk_data.groupby('Anon Student Id'): |
|
prob_hierarchy = std_groups.groupby('Level (Workspace Id)') |
|
for hierarchy, hierarchy_groups in prob_hierarchy: |
|
if workspace_name == hierarchy: |
|
|
|
self.unique_students.update({student_id}) |
|
self.unique_prob_hierarchy.update({hierarchy}) |
|
prob_name = hierarchy_groups.groupby('Problem Name') |
|
for problem_name, prob_name_groups in prob_name: |
|
self.unique_problems.update({problem_name}) |
|
step_names = prob_name_groups['Step Name'] |
|
sub_skills = prob_name_groups['KC Model(MATHia)'] |
|
for step in step_names: |
|
if str(step) != "nan": |
|
self.unique_steps.update({step}) |
|
for a in sub_skills: |
|
if str(a) != "nan": |
|
temp = a.split("~~") |
|
for kc in temp: |
|
self.unique_kcs.update({kc}) |
|
self.unique_problems.remove("pr") |
|
self.unique_prob_hierarchy.remove("ph") |
|
self.unique_steps.remove("s") |
|
self.unique_kcs.remove("kc") |
|
end_time = time.time() |
|
print("Time Taken to analyze dataset = ", end_time - start_time) |
|
print("Workspace-> ",workspace_name) |
|
print("Length of unique students->", len(self.unique_students)) |
|
print("Length of unique problems->", len(self.unique_problems)) |
|
print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy)) |
|
print("Length of unique step names ->", len(self.unique_steps)) |
|
print("Length of unique knowledge components ->", len(self.unique_kcs)) |
|
|
|
|
|
|
|
def analyze_dataset_by_school(self, workspace_name, school_id=None): |
|
file_iterator = self.load_file_iterator(sep=",") |
|
|
|
start_time = time.time() |
|
self.unique_schools = set() |
|
self.unique_class = set() |
|
self.unique_students = set() |
|
self.unique_problems = set() |
|
self.unique_steps = set() |
|
self.unique_kcs = set() |
|
self.unique_actions = set() |
|
self.unique_outcomes = set() |
|
self.unique_new_steps_w_action_attempt = set() |
|
self.unique_new_steps_w_kcs = set() |
|
self.unique_new_steps_w_action_attempt_kcs = set() |
|
|
|
for chunk_data in file_iterator: |
|
for school, school_group in chunk_data.groupby('CF (Anon School Id)'): |
|
|
|
self.unique_schools.add(school) |
|
for class_id, class_group in school_group.groupby('CF (Anon Class Id)'): |
|
self.unique_class.add(class_id) |
|
for student_id, std_group in class_group.groupby('Anon Student Id'): |
|
self.unique_students.add(student_id) |
|
for prob, prob_group in std_group.groupby('Problem Name'): |
|
self.unique_problems.add(prob) |
|
|
|
step_names = set(prob_group['Step Name']) |
|
sub_skills = set(prob_group['KC Model(MATHia)']) |
|
actions = set(prob_group['Action']) |
|
outcomes = set(prob_group['Outcome']) |
|
|
|
self.unique_steps.update(step_names) |
|
self.unique_kcs.update(sub_skills) |
|
self.unique_actions.update(actions) |
|
self.unique_outcomes.update(outcomes) |
|
|
|
for step in step_names: |
|
if pd.isna(step): |
|
step_group = prob_group[pd.isna(prob_group['Step Name'])] |
|
else: |
|
step_group = prob_group[prob_group['Step Name']==step] |
|
|
|
for kc in set(step_group['KC Model(MATHia)']): |
|
new_step = f"{step}:{kc}" |
|
self.unique_new_steps_w_kcs.add(new_step) |
|
|
|
for action, action_group in step_group.groupby('Action'): |
|
for attempt, attempt_group in action_group.groupby('Attempt At Step'): |
|
new_step = f"{step}:{action}:{attempt}" |
|
self.unique_new_steps_w_action_attempt.add(new_step) |
|
|
|
for kc in set(attempt_group["KC Model(MATHia)"]): |
|
new_step = f"{step}:{action}:{attempt}:{kc}" |
|
self.unique_new_steps_w_action_attempt_kcs.add(new_step) |
|
|
|
|
|
end_time = time.time() |
|
print("Time Taken to analyze dataset = ", end_time - start_time) |
|
print("Workspace-> ",workspace_name) |
|
print("Length of unique students->", len(self.unique_students)) |
|
print("Length of unique problems->", len(self.unique_problems)) |
|
print("Length of unique classes->", len(self.unique_class)) |
|
print("Length of unique step names ->", len(self.unique_steps)) |
|
print("Length of unique knowledge components ->", len(self.unique_kcs)) |
|
print("Length of unique actions ->", len(self.unique_actions)) |
|
print("Length of unique outcomes ->", len(self.unique_outcomes)) |
|
print("Length of unique new step names with actions and attempts ->", len(self.unique_new_steps_w_action_attempt)) |
|
print("Length of unique new step names with actions, attempts and kcs ->", len(self.unique_new_steps_w_action_attempt_kcs)) |
|
print("Length of unique new step names with kcs ->", len(self.unique_new_steps_w_kcs)) |
|
|
|
def load_file_iterator(self, sep="\t"): |
|
chunk_iterator = pd.read_csv(self.input_file_path, sep=sep, header=0, iterator=True, chunksize=1000000) |
|
return chunk_iterator |
|
|
|
|