astra / recalibration.py
suryadev1's picture
fine
5c72fe4
import torch
from torch import nn, optim
from torch.nn import functional as F
import metrics
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self, model, device="cpu"):
super(ModelWithTemperature, self).__init__()
self.model = model
self.device = torch.device(device)
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def forward(self, input):
logits = self.model(input["input"], input["segment_label"], input["feat"])
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1)).to(self.device)
return logits / temperature
# This function probably should live outside of this class, but whatever
def set_temperature(self, valid_loader):
"""
Tune the tempearature of the model (using the validation set).
We're going to set it to optimize NLL.
valid_loader (DataLoader): validation set loader
"""
#self.cuda()
nll_criterion = nn.CrossEntropyLoss()
ece_criterion = metrics.ECELoss()
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
with torch.no_grad():
for input, label in valid_loader:
# print("Input = ", input["input"])
# print("Input = ", input["segment_label"])
# print("Input = ", input["feat"])
# input = input
logits = self.model(input["input"].to(self.device), input["segment_label"].to(self.device), input["feat"].to(self.device))
logits_list.append(logits)
labels_list.append(label)
logits = torch.cat(logits_list).to(self.device)
labels = torch.cat(labels_list).to(self.device)
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion.loss(logits.cpu().numpy(),labels.cpu().numpy(),15)
#before_temperature_ece = ece_criterion(logits, labels).item()
#ece_2 = ece_criterion_2.loss(logits,labels)
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))
#print(ece_2)
# Next: optimize the temperature w.r.t. NLL
optimizer = optim.LBFGS([self.temperature], lr=0.005, max_iter=1000)
def eval():
loss = nll_criterion(self.temperature_scale(logits.to(self.device)), labels.to(self.device))
loss.backward()
return loss
optimizer.step(eval)
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion.loss(self.temperature_scale(logits).detach().cpu().numpy(),labels.cpu().numpy(),15)
#after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
print('Optimal temperature: %.3f' % self.temperature.item())
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))
return self