import numpy as np #import matplotlib as mpl #mpl.use('Agg') import matplotlib.pyplot as plt import metrics class ConfidenceHistogram(metrics.MaxProbCELoss): def plot(self, output, labels, n_bins = 15, logits = True, title = None): super().loss(output, labels, n_bins, logits) #scale each datapoint n = len(labels) w = np.ones(n)/n plt.rcParams["font.family"] = "serif" #size and axis limits plt.figure(figsize=(3,3)) plt.xlim(0,1) plt.ylim(0,1) plt.xticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0], ['0.0', '0.2', '0.4', '0.6', '0.8', '1.0']) plt.yticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0], ['0.0', '0.2', '0.4', '0.6', '0.8', '1.0']) #plot grid plt.grid(color='tab:grey', linestyle=(0, (1, 5)), linewidth=1,zorder=0) #plot histogram plt.hist(self.confidences,n_bins,weights = w,color='b',range=(0.0,1.0),edgecolor = 'k') #plot vertical dashed lines acc = np.mean(self.accuracies) conf = np.mean(self.confidences) plt.axvline(x=acc, color='tab:grey', linestyle='--', linewidth = 3) plt.axvline(x=conf, color='tab:grey', linestyle='--', linewidth = 3) if acc > conf: plt.text(acc+0.03,0.9,'Accuracy',rotation=90,fontsize=11) plt.text(conf-0.07,0.9,'Avg. Confidence',rotation=90, fontsize=11) else: plt.text(acc-0.07,0.9,'Accuracy',rotation=90,fontsize=11) plt.text(conf+0.03,0.9,'Avg. Confidence',rotation=90, fontsize=11) plt.ylabel('% of Samples',fontsize=13) plt.xlabel('Confidence',fontsize=13) plt.tight_layout() if title is not None: plt.title(title,fontsize=16) return plt class ReliabilityDiagram(metrics.MaxProbCELoss): def plot(self, output, labels, n_bins = 15, logits = True, title = None): super().loss(output, labels, n_bins, logits) #computations delta = 1.0/n_bins x = np.arange(0,1,delta) mid = np.linspace(delta/2,1-delta/2,n_bins) error = np.abs(np.subtract(mid,self.bin_acc)) plt.rcParams["font.family"] = "serif" #size and axis limits plt.figure(figsize=(3,3)) plt.xlim(0,1) plt.ylim(0,1) #plot grid plt.grid(color='tab:grey', linestyle=(0, (1, 5)), linewidth=1,zorder=0) #plot bars and identity line plt.bar(x, self.bin_acc, color = 'b', width=delta,align='edge',edgecolor = 'k',label='Outputs',zorder=5) plt.bar(x, error, bottom=np.minimum(self.bin_acc,mid), color = 'mistyrose', alpha=0.5, width=delta,align='edge',edgecolor = 'r',hatch='/',label='Gap',zorder=10) ident = [0.0, 1.0] plt.plot(ident,ident,linestyle='--',color='tab:grey',zorder=15) #labels and legend plt.ylabel('Accuracy',fontsize=13) plt.xlabel('Confidence',fontsize=13) plt.legend(loc='upper left',framealpha=1.0,fontsize='medium') if title is not None: plt.title(title,fontsize=16) plt.tight_layout() return plt