import time import pandas as pd import sys class DataPreprocessor: def __init__(self, input_file_path): self.input_file_path = input_file_path self.unique_students = None self.unique_problems = None self.unique_prob_hierarchy = None self.unique_steps = None self.unique_kcs = None def analyze_dataset(self): file_iterator = self.load_file_iterator() start_time = time.time() self.unique_students = {"st"} self.unique_problems = {"pr"} self.unique_prob_hierarchy = {"ph"} self.unique_kcs = {"kc"} for chunk_data in file_iterator: for student_id, std_groups in chunk_data.groupby('Anon Student Id'): self.unique_students.update({student_id}) prob_hierarchy = std_groups.groupby('Level (Workspace Id)') for hierarchy, hierarchy_groups in prob_hierarchy: self.unique_prob_hierarchy.update({hierarchy}) prob_name = hierarchy_groups.groupby('Problem Name') for problem_name, prob_name_groups in prob_name: self.unique_problems.update({problem_name}) sub_skills = prob_name_groups['KC Model(MATHia)'] for a in sub_skills: if str(a) != "nan": temp = a.split("~~") for kc in temp: self.unique_kcs.update({kc}) self.unique_students.remove("st") self.unique_problems.remove("pr") self.unique_prob_hierarchy.remove("ph") self.unique_kcs.remove("kc") end_time = time.time() print("Time Taken to analyze dataset = ", end_time - start_time) print("Length of unique students->", len(self.unique_students)) print("Length of unique problems->", len(self.unique_problems)) print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy)) print("Length of Unique Knowledge components ->", len(self.unique_kcs)) def analyze_dataset_by_section(self, workspace_name): file_iterator = self.load_file_iterator() start_time = time.time() self.unique_students = {"st"} self.unique_problems = {"pr"} self.unique_prob_hierarchy = {"ph"} self.unique_steps = {"s"} self.unique_kcs = {"kc"} # with open("workspace_info.txt", 'a') as f: # sys.stdout = f for chunk_data in file_iterator: for student_id, std_groups in chunk_data.groupby('Anon Student Id'): prob_hierarchy = std_groups.groupby('Level (Workspace Id)') for hierarchy, hierarchy_groups in prob_hierarchy: if workspace_name == hierarchy: # print("Workspace : ", hierarchy) self.unique_students.update({student_id}) self.unique_prob_hierarchy.update({hierarchy}) prob_name = hierarchy_groups.groupby('Problem Name') for problem_name, prob_name_groups in prob_name: self.unique_problems.update({problem_name}) step_names = prob_name_groups['Step Name'] sub_skills = prob_name_groups['KC Model(MATHia)'] for step in step_names: if str(step) != "nan": self.unique_steps.update({step}) for a in sub_skills: if str(a) != "nan": temp = a.split("~~") for kc in temp: self.unique_kcs.update({kc}) self.unique_problems.remove("pr") self.unique_prob_hierarchy.remove("ph") self.unique_steps.remove("s") self.unique_kcs.remove("kc") end_time = time.time() print("Time Taken to analyze dataset = ", end_time - start_time) print("Workspace-> ",workspace_name) print("Length of unique students->", len(self.unique_students)) print("Length of unique problems->", len(self.unique_problems)) print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy)) print("Length of unique step names ->", len(self.unique_steps)) print("Length of unique knowledge components ->", len(self.unique_kcs)) # f.close() # sys.stdout = sys.__stdout__ def analyze_dataset_by_school(self, workspace_name, school_id=None): file_iterator = self.load_file_iterator(sep=",") start_time = time.time() self.unique_schools = set() self.unique_class = set() self.unique_students = set() self.unique_problems = set() self.unique_steps = set() self.unique_kcs = set() self.unique_actions = set() self.unique_outcomes = set() self.unique_new_steps_w_action_attempt = set() self.unique_new_steps_w_kcs = set() self.unique_new_steps_w_action_attempt_kcs = set() for chunk_data in file_iterator: for school, school_group in chunk_data.groupby('CF (Anon School Id)'): # if school and school == school_id: self.unique_schools.add(school) for class_id, class_group in school_group.groupby('CF (Anon Class Id)'): self.unique_class.add(class_id) for student_id, std_group in class_group.groupby('Anon Student Id'): self.unique_students.add(student_id) for prob, prob_group in std_group.groupby('Problem Name'): self.unique_problems.add(prob) step_names = set(prob_group['Step Name']) sub_skills = set(prob_group['KC Model(MATHia)']) actions = set(prob_group['Action']) outcomes = set(prob_group['Outcome']) self.unique_steps.update(step_names) self.unique_kcs.update(sub_skills) self.unique_actions.update(actions) self.unique_outcomes.update(outcomes) for step in step_names: if pd.isna(step): step_group = prob_group[pd.isna(prob_group['Step Name'])] else: step_group = prob_group[prob_group['Step Name']==step] for kc in set(step_group['KC Model(MATHia)']): new_step = f"{step}:{kc}" self.unique_new_steps_w_kcs.add(new_step) for action, action_group in step_group.groupby('Action'): for attempt, attempt_group in action_group.groupby('Attempt At Step'): new_step = f"{step}:{action}:{attempt}" self.unique_new_steps_w_action_attempt.add(new_step) for kc in set(attempt_group["KC Model(MATHia)"]): new_step = f"{step}:{action}:{attempt}:{kc}" self.unique_new_steps_w_action_attempt_kcs.add(new_step) end_time = time.time() print("Time Taken to analyze dataset = ", end_time - start_time) print("Workspace-> ",workspace_name) print("Length of unique students->", len(self.unique_students)) print("Length of unique problems->", len(self.unique_problems)) print("Length of unique classes->", len(self.unique_class)) print("Length of unique step names ->", len(self.unique_steps)) print("Length of unique knowledge components ->", len(self.unique_kcs)) print("Length of unique actions ->", len(self.unique_actions)) print("Length of unique outcomes ->", len(self.unique_outcomes)) print("Length of unique new step names with actions and attempts ->", len(self.unique_new_steps_w_action_attempt)) print("Length of unique new step names with actions, attempts and kcs ->", len(self.unique_new_steps_w_action_attempt_kcs)) print("Length of unique new step names with kcs ->", len(self.unique_new_steps_w_kcs)) def load_file_iterator(self, sep="\t"): chunk_iterator = pd.read_csv(self.input_file_path, sep=sep, header=0, iterator=True, chunksize=1000000) return chunk_iterator