import argparse import os import torch import torch.nn as nn from torch.utils.data import DataLoader, random_split, TensorDataset from src.dataset import TokenizerDataset from src.bert import BERT from src.pretrainer import BERTFineTuneTrainer1 from src.vocab import Vocab import pandas as pd def preprocess_labels(label_csv_path): try: labels_df = pd.read_csv(label_csv_path) labels = labels_df['last_hint_class'].values.astype(int) return torch.tensor(labels, dtype=torch.long) except Exception as e: print(f"Error reading dataset file: {e}") return None def preprocess_data(data_path, vocab, max_length=128): try: with open(data_path, 'r') as f: sequences = f.readlines() except Exception as e: print(f"Error reading data file: {e}") return None, None tokenized_sequences = [] for sequence in sequences: sequence = sequence.strip() if sequence: encoded = vocab.to_seq(sequence, seq_len=max_length) encoded = encoded[:max_length] + [vocab.vocab.get('[PAD]', 0)] * (max_length - len(encoded)) segment_label = [0] * max_length tokenized_sequences.append({ 'input_ids': torch.tensor(encoded), 'segment_label': torch.tensor(segment_label) }) input_ids = torch.cat([t['input_ids'].unsqueeze(0) for t in tokenized_sequences], dim=0) segment_labels = torch.cat([t['segment_label'].unsqueeze(0) for t in tokenized_sequences], dim=0) print(f"Input IDs shape: {input_ids.shape}") print(f"Segment labels shape: {segment_labels.shape}") return input_ids, segment_labels def custom_collate_fn(batch): inputs = [item['input_ids'].unsqueeze(0) for item in batch] labels = [item['label'].unsqueeze(0) for item in batch] segment_labels = [item['segment_label'].unsqueeze(0) for item in batch] inputs = torch.cat(inputs, dim=0) labels = torch.cat(labels, dim=0) segment_labels = torch.cat(segment_labels, dim=0) return { 'input': inputs, 'label': labels, 'segment_label': segment_labels } def main(opt): # Set device to GPU if available, otherwise use CPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load vocabulary vocab = Vocab(opt.vocab_file) vocab.load_vocab() # Preprocess data and labels input_ids, segment_labels = preprocess_data(opt.data_path, vocab, max_length=50) # Using sequence length 50 labels = preprocess_labels(opt.dataset) if input_ids is None or segment_labels is None or labels is None: print("Error in preprocessing data. Exiting.") return # Create TensorDataset and split into train and validation sets dataset = TensorDataset(input_ids, segment_labels, labels) val_size = len(dataset) - int(0.8 * len(dataset)) val_dataset, train_dataset = random_split(dataset, [val_size, len(dataset) - val_size]) # Create DataLoaders for training and validation train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, collate_fn=custom_collate_fn) val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False, collate_fn=custom_collate_fn) # Initialize custom BERT model and move it to the device custom_model = CustomBERTModel( vocab_size=len(vocab.vocab), output_dim=2, pre_trained_model_path=opt.pre_trained_model_path ).to(device) # Initialize the fine-tuning trainer trainer = BERTFineTuneTrainer1( bert=custom_model, vocab_size=len(vocab.vocab), train_dataloader=train_dataloader, test_dataloader=val_dataloader, lr=1e-5, # Using learning rate 10^-5 as specified num_labels=2, with_cuda=torch.cuda.is_available(), log_freq=10, workspace_name=opt.output_dir, log_folder_path=opt.log_folder_path ) # Train the model trainer.train(epoch=20) # Save the model os.makedirs(opt.output_dir, exist_ok=True) output_model_file = os.path.join(opt.output_dir, 'fine_tuned_model_3.pth') torch.save(custom_model, output_model_file) print(f'Model saved to {output_model_file}') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Fine-tune BERT model.') parser.add_argument('--dataset', type=str, default='/home/jupyter/bert/dataset/hint_based/ratio_proportion_change_3/er/er_train.csv', help='Path to the dataset file.') parser.add_argument('--data_path', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/gt/er.txt', help='Path to the input sequence file.') parser.add_argument('--output_dir', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/output/hint_classification', help='Directory to save the fine-tuned model.') parser.add_argument('--pre_trained_model_path', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/output/pretrain:1800ms:64hs:4l:8a:50s:64b:1000e:-5lr/bert_trained.seq_encoder.model.ep68', help='Path to the pre-trained BERT model.') parser.add_argument('--vocab_file', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/pretraining/vocab.txt', help='Path to the vocabulary file.') parser.add_argument('--log_folder_path', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/logs/oct', help='Path to the folder for saving logs.') opt = parser.parse_args() main(opt)