import torch.nn as nn import torch import math class TokenEmbedding(nn.Embedding): def __init__(self, vocab_size, embed_size=512): super().__init__(vocab_size, embed_size, padding_idx=0) # look at vocab_file class SegmentEmbedding(nn.Embedding): def __init__(self, embed_size=512): super().__init__(3, embed_size, padding_idx=0) class PositionalEmbedding(nn.Module): def __init__(self, d_model, max_len=512): super().__init__() # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model).float() pe.require_grad = False position = torch.arange(0, max_len).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): return self.pe[:, :x.size(1)] class BERTEmbedding(nn.Module): """ BERT Embedding which consisted of following features 1. TokenEmbedding : normal embedding matrix 2. PositionalEmbedding : adding positional information using sin, cos 2. SegmentEmbedding : adding sentence segment info, (sent_A:1, sent_B:2) sum of all these features are output of BERTEmbedding """ def __init__(self, vocab_size, embed_size, dropout=0.1): """ :param vocab_size: total vocab size :param embed_size: embedding size of token embedding :param dropout: dropout rate """ super().__init__() self.token = TokenEmbedding(vocab_size=vocab_size, embed_size=embed_size) self.position = PositionalEmbedding(d_model=self.token.embedding_dim) self.segment = SegmentEmbedding(embed_size=self.token.embedding_dim) self.dropout = nn.Dropout(p=dropout) self.embed_size = embed_size def forward(self, sequence, segment_label): x = self.token(sequence) + self.position(sequence) + self.segment(segment_label) return self.dropout(x)