sushmanth commited on
Commit
25b38ac
1 Parent(s): 300ac32

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
3
+ import requests
4
+ from PIL import Image
5
+
6
+ processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
7
+ model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
8
+
9
+ # load image examples
10
+ urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU',
11
+ 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU']
12
+ for idx, url in enumerate(urls):
13
+ image = Image.open(requests.get(url, stream=True).raw)
14
+ image.save(f"image_{idx}.png")
15
+
16
+ def process_image(image):
17
+ # prepare image
18
+ pixel_values = processor(image, return_tensors="pt").pixel_values
19
+
20
+ # generate (no beam search)
21
+ generated_ids = model.generate(pixel_values)
22
+
23
+ # decode
24
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
25
+
26
+ return generated_text
27
+
28
+ title = "Interactive demo: TrOCR"
29
+ description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds."
30
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
31
+ examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]]
32
+
33
+ #css = """.output_image, .input_image {height: 600px !important}"""
34
+
35
+ iface = gr.Interface(fn=process_image,
36
+ inputs=gr.inputs.Image(type="pil"),
37
+ outputs=gr.outputs.Textbox(),
38
+ title=title,
39
+ description=description,
40
+ article=article,
41
+ examples=examples)
42
+ iface.launch(debug=True)