File size: 6,435 Bytes
cbd515b
 
 
 
 
 
 
6859b03
cbd515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6859b03
 
cbd515b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6859b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbd515b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
###
'''
!git clone https://huggingface.co/spaces/radames/SPIGA-face-alignment-headpose-estimator
!cp -r SPIGA-face-alignment-headpose-estimator/SPIGA .
!pip install -r SPIGA/requirements.txt
!pip install datasets
!pip install retinaface-py>=0.0.2
!pip install bounding-box
!huggingface-cli login
'''

import sys
sys.path.insert(0, "SPIGA")

import numpy as np

from datasets import load_dataset
from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework

processor = SPIGAFramework(ModelConfig("300wpublic"))

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.path import Path
import PIL

def get_patch(landmarks, color='lime', closed=False):
    contour = landmarks
    ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1)
    facecolor = (0, 0, 0, 0)      # Transparent fill color, if open
    if closed:
        contour.append(contour[0])
        ops.append(Path.CLOSEPOLY)
        facecolor = color
    path = Path(contour, ops)
    return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)

# Draw to a buffer.

def conditioning_from_landmarks(landmarks, size=512):
    # Precisely control output image size
    dpi = 72
    fig, ax = plt.subplots(1, figsize=[size/dpi, size/dpi], tight_layout={'pad':0})
    fig.set_dpi(dpi)

    black = np.zeros((size, size, 3))
    ax.imshow(black)

    face_patch = get_patch(landmarks[0:17])
    l_eyebrow = get_patch(landmarks[17:22], color='yellow')
    r_eyebrow = get_patch(landmarks[22:27], color='yellow')
    nose_v = get_patch(landmarks[27:31], color='orange')
    nose_h = get_patch(landmarks[31:36], color='orange')
    l_eye = get_patch(landmarks[36:42], color='magenta', closed=True)
    r_eye = get_patch(landmarks[42:48], color='magenta', closed=True)
    outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True)
    inner_lips = get_patch(landmarks[60:68], color='blue', closed=True)

    ax.add_patch(face_patch)
    ax.add_patch(l_eyebrow)
    ax.add_patch(r_eyebrow)
    ax.add_patch(nose_v)
    ax.add_patch(nose_h)
    ax.add_patch(l_eye)
    ax.add_patch(r_eye)
    ax.add_patch(outer_lips)
    ax.add_patch(inner_lips)

    plt.axis('off')

    fig.canvas.draw()
    buffer, (width, height) = fig.canvas.print_to_buffer()
    assert width == height
    assert width == size

    buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
    buffer = buffer[:, :, 0:3]
    plt.close(fig)
    return PIL.Image.fromarray(buffer)

import retinaface
import spiga.demo.analyze.track.retinasort.config as cfg

config = cfg.cfg_retinasort
device = "cpu"
face_detector = retinaface.RetinaFaceDetector(model=config['retina']['model_name'],
                                              device=device,
                                              extra_features=config['retina']['extra_features'],
                                              cfg_postreat=config['retina']['postreat'])

import cv2
Image = PIL.Image
import os
def single_pred_features(image):
    if type(image) == type("") and os.path.exists(image):
        image = Image.open(image).convert("RGB")
    elif hasattr(image, "shape"):
        image = Image.fromarray(image).convert("RGB")
    else:
        image = image.convert("RGB")
    image = image.resize((512, 512))
    cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    face_detector.set_input_shape(image.size[1], image.size[0])
    features = face_detector.inference(image)
    if features:
        bboxes = features['bbox']
        bboxes_n = []
        for bbox in bboxes:
            x1, y1, x2, y2 = bbox[:4]
            bbox_wh = [x1, y1, x2-x1, y2-y1]
            bboxes_n.append(bbox_wh)
        face_features = processor.inference(cv2_image, bboxes_n)
        landmarks = face_features["landmarks"][0]
        face_features["spiga"] = landmarks
        face_features['spiga_seg'] = conditioning_from_landmarks(landmarks)
        return features ,face_features

def produce_center_crop_image(features ,face_features, draw_rect = False):
    left, top, right, bottom, _ = features["bbox"][0]
    color = "red"
    label = ""
    from bounding_box import bounding_box as bb
    img = np.asarray(face_features["spiga_seg"])
    step = 20
    if draw_rect:
        bb.add(img, left - step, top - step, right + step, bottom + step, label, color)
    crop_img = Image.fromarray(img[ int(top - step):int(bottom + step) ,int(left - step):int(right + step), :])
    crop_img = crop_img.resize((256, 256))
    req = Image.fromarray(
    np.concatenate(
        [np.full([512, 128, 3], fill_value=0),
    np.concatenate([np.full([128, 256, 3], fill_value=0) ,np.asarray(crop_img),
                    np.full([128, 256, 3], fill_value=0)], axis = 0),
         np.full([512, 128, 3], fill_value=0)
        ], axis = 1
    ).astype(np.uint8))
    return req

'''
from pred_color import *
img = "babyxiang_ai.png"
img = "Protector_Cromwell_style.png"
features ,face_features = single_pred_features(img)

fix_img = produce_center_crop_image(features ,face_features, draw_rect = False)
fix_img

fix_r_img = produce_center_crop_image(features ,face_features, draw_rect = True)
fix_r_img


from pred_color import *
img = "babyxiang_ai.png"
img = "Protector_Cromwell_style.png"
features ,face_features = single_pred_features(img)

left, top, right, bottom, _ = features["bbox"][0]
color = "red"
label = ""

from bounding_box import bounding_box as bb
img = np.asarray(face_features["spiga_seg"])
step = 20
bb.add(img, left - step, top - step, right + step, bottom + step, label, color)
Image.fromarray(img)

crop_img = Image.fromarray(img[ int(top - step):int(bottom + step) ,int(left - step):int(right + step), :])
crop_img = crop_img.resize((256, 256))
crop_img

Image.fromarray(
np.concatenate(
    [np.full([512, 128, 3], fill_value=0),
np.concatenate([np.full([128, 256, 3], fill_value=0) ,np.asarray(crop_img),
                np.full([128, 256, 3], fill_value=0)], axis = 0),
     np.full([512, 128, 3], fill_value=0)
    ], axis = 1
).astype(np.uint8))
'''

if __name__ == "__main__":
    from datasets import load_dataset, Dataset
    ds = load_dataset("svjack/facesyntheticsspigacaptioned_en_zh_1")
    dss = ds["train"]

    xiangbaobao = PIL.Image.open("babyxiang.png")
    out = single_pred_features(xiangbaobao.resize((512, 512)))
    out["spiga_seg"]

    out = single_pred_features(dss[0]["image"])
    out["spiga_seg"]