Spaces:
Running
Running
File size: 6,435 Bytes
cbd515b 6859b03 cbd515b 6859b03 cbd515b 6859b03 cbd515b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
###
'''
!git clone https://huggingface.co/spaces/radames/SPIGA-face-alignment-headpose-estimator
!cp -r SPIGA-face-alignment-headpose-estimator/SPIGA .
!pip install -r SPIGA/requirements.txt
!pip install datasets
!pip install retinaface-py>=0.0.2
!pip install bounding-box
!huggingface-cli login
'''
import sys
sys.path.insert(0, "SPIGA")
import numpy as np
from datasets import load_dataset
from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework
processor = SPIGAFramework(ModelConfig("300wpublic"))
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.path import Path
import PIL
def get_patch(landmarks, color='lime', closed=False):
contour = landmarks
ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1)
facecolor = (0, 0, 0, 0) # Transparent fill color, if open
if closed:
contour.append(contour[0])
ops.append(Path.CLOSEPOLY)
facecolor = color
path = Path(contour, ops)
return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)
# Draw to a buffer.
def conditioning_from_landmarks(landmarks, size=512):
# Precisely control output image size
dpi = 72
fig, ax = plt.subplots(1, figsize=[size/dpi, size/dpi], tight_layout={'pad':0})
fig.set_dpi(dpi)
black = np.zeros((size, size, 3))
ax.imshow(black)
face_patch = get_patch(landmarks[0:17])
l_eyebrow = get_patch(landmarks[17:22], color='yellow')
r_eyebrow = get_patch(landmarks[22:27], color='yellow')
nose_v = get_patch(landmarks[27:31], color='orange')
nose_h = get_patch(landmarks[31:36], color='orange')
l_eye = get_patch(landmarks[36:42], color='magenta', closed=True)
r_eye = get_patch(landmarks[42:48], color='magenta', closed=True)
outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True)
inner_lips = get_patch(landmarks[60:68], color='blue', closed=True)
ax.add_patch(face_patch)
ax.add_patch(l_eyebrow)
ax.add_patch(r_eyebrow)
ax.add_patch(nose_v)
ax.add_patch(nose_h)
ax.add_patch(l_eye)
ax.add_patch(r_eye)
ax.add_patch(outer_lips)
ax.add_patch(inner_lips)
plt.axis('off')
fig.canvas.draw()
buffer, (width, height) = fig.canvas.print_to_buffer()
assert width == height
assert width == size
buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
buffer = buffer[:, :, 0:3]
plt.close(fig)
return PIL.Image.fromarray(buffer)
import retinaface
import spiga.demo.analyze.track.retinasort.config as cfg
config = cfg.cfg_retinasort
device = "cpu"
face_detector = retinaface.RetinaFaceDetector(model=config['retina']['model_name'],
device=device,
extra_features=config['retina']['extra_features'],
cfg_postreat=config['retina']['postreat'])
import cv2
Image = PIL.Image
import os
def single_pred_features(image):
if type(image) == type("") and os.path.exists(image):
image = Image.open(image).convert("RGB")
elif hasattr(image, "shape"):
image = Image.fromarray(image).convert("RGB")
else:
image = image.convert("RGB")
image = image.resize((512, 512))
cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
face_detector.set_input_shape(image.size[1], image.size[0])
features = face_detector.inference(image)
if features:
bboxes = features['bbox']
bboxes_n = []
for bbox in bboxes:
x1, y1, x2, y2 = bbox[:4]
bbox_wh = [x1, y1, x2-x1, y2-y1]
bboxes_n.append(bbox_wh)
face_features = processor.inference(cv2_image, bboxes_n)
landmarks = face_features["landmarks"][0]
face_features["spiga"] = landmarks
face_features['spiga_seg'] = conditioning_from_landmarks(landmarks)
return features ,face_features
def produce_center_crop_image(features ,face_features, draw_rect = False):
left, top, right, bottom, _ = features["bbox"][0]
color = "red"
label = ""
from bounding_box import bounding_box as bb
img = np.asarray(face_features["spiga_seg"])
step = 20
if draw_rect:
bb.add(img, left - step, top - step, right + step, bottom + step, label, color)
crop_img = Image.fromarray(img[ int(top - step):int(bottom + step) ,int(left - step):int(right + step), :])
crop_img = crop_img.resize((256, 256))
req = Image.fromarray(
np.concatenate(
[np.full([512, 128, 3], fill_value=0),
np.concatenate([np.full([128, 256, 3], fill_value=0) ,np.asarray(crop_img),
np.full([128, 256, 3], fill_value=0)], axis = 0),
np.full([512, 128, 3], fill_value=0)
], axis = 1
).astype(np.uint8))
return req
'''
from pred_color import *
img = "babyxiang_ai.png"
img = "Protector_Cromwell_style.png"
features ,face_features = single_pred_features(img)
fix_img = produce_center_crop_image(features ,face_features, draw_rect = False)
fix_img
fix_r_img = produce_center_crop_image(features ,face_features, draw_rect = True)
fix_r_img
from pred_color import *
img = "babyxiang_ai.png"
img = "Protector_Cromwell_style.png"
features ,face_features = single_pred_features(img)
left, top, right, bottom, _ = features["bbox"][0]
color = "red"
label = ""
from bounding_box import bounding_box as bb
img = np.asarray(face_features["spiga_seg"])
step = 20
bb.add(img, left - step, top - step, right + step, bottom + step, label, color)
Image.fromarray(img)
crop_img = Image.fromarray(img[ int(top - step):int(bottom + step) ,int(left - step):int(right + step), :])
crop_img = crop_img.resize((256, 256))
crop_img
Image.fromarray(
np.concatenate(
[np.full([512, 128, 3], fill_value=0),
np.concatenate([np.full([128, 256, 3], fill_value=0) ,np.asarray(crop_img),
np.full([128, 256, 3], fill_value=0)], axis = 0),
np.full([512, 128, 3], fill_value=0)
], axis = 1
).astype(np.uint8))
'''
if __name__ == "__main__":
from datasets import load_dataset, Dataset
ds = load_dataset("svjack/facesyntheticsspigacaptioned_en_zh_1")
dss = ds["train"]
xiangbaobao = PIL.Image.open("babyxiang.png")
out = single_pred_features(xiangbaobao.resize((512, 512)))
out["spiga_seg"]
out = single_pred_features(dss[0]["image"])
out["spiga_seg"]
|