|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.models.attention import BasicTransformerBlock, TemporalBasicTransformerBlock |
|
|
|
from models_diffusers.attention import BasicTransformerBlock |
|
|
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.resnet import AlphaBlender |
|
|
|
|
|
@dataclass |
|
class TransformerTemporalModelOutput(BaseOutput): |
|
""" |
|
The output of [`TransformerTemporalModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`): |
|
The hidden states output conditioned on `encoder_hidden_states` input. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class TransformerTemporalModel(ModelMixin, ConfigMixin): |
|
""" |
|
A Transformer model for video-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlock` attention should contain a bias parameter. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): |
|
Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported |
|
activation functions. |
|
norm_elementwise_affine (`bool`, *optional*): |
|
Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization. |
|
double_self_attention (`bool`, *optional*): |
|
Configure if each `TransformerBlock` should contain two self-attention layers. |
|
positional_embeddings: (`str`, *optional*): |
|
The type of positional embeddings to apply to the sequence input before passing use. |
|
num_positional_embeddings: (`int`, *optional*): |
|
The maximum length of the sequence over which to apply positional embeddings. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
norm_elementwise_affine: bool = True, |
|
double_self_attention: bool = True, |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
double_self_attention=double_self_attention, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
positional_embeddings=positional_embeddings, |
|
num_positional_embeddings=num_positional_embeddings, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.LongTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
class_labels: torch.LongTensor = None, |
|
num_frames: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> TransformerTemporalModelOutput: |
|
""" |
|
The [`TransformerTemporal`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): |
|
Input hidden_states. |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
num_frames (`int`, *optional*, defaults to 1): |
|
The number of frames to be processed per batch. This is used to reshape the hidden states. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is |
|
returned, otherwise a `tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
batch_frames, channel, height, width = hidden_states.shape |
|
batch_size = batch_frames // num_frames |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) |
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) |
|
|
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states[None, None, :] |
|
.reshape(batch_size, height, width, num_frames, channel) |
|
.permute(0, 3, 4, 1, 2) |
|
.contiguous() |
|
) |
|
hidden_states = hidden_states.reshape(batch_frames, channel, height, width) |
|
|
|
output = hidden_states + residual |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return TransformerTemporalModelOutput(sample=output) |
|
|
|
|
|
class TransformerSpatioTemporalModel(nn.Module): |
|
""" |
|
A Transformer model for video-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
out_channels (`int`, *optional*): |
|
The number of channels in the output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: int = 320, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
cross_attention_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.inner_dim = inner_dim |
|
|
|
|
|
self.in_channels = in_channels |
|
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
time_mix_inner_dim = inner_dim |
|
self.temporal_transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalBasicTransformerBlock( |
|
inner_dim, |
|
time_mix_inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
time_embed_dim = in_channels * 4 |
|
self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels) |
|
self.time_proj = Timesteps(in_channels, True, 0) |
|
self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images") |
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
|
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
Input hidden_states. |
|
num_frames (`int`): |
|
The number of frames to be processed per batch. This is used to reshape the hidden states. |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*): |
|
A tensor indicating whether the input contains only images. 1 indicates that the input contains only |
|
images, 0 indicates that the input contains video frames. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is |
|
returned, otherwise a `tuple` where the first element is the sample tensor. |
|
""" |
|
|
|
batch_frames, _, height, width = hidden_states.shape |
|
num_frames = image_only_indicator.shape[-1] |
|
batch_size = batch_frames // num_frames |
|
|
|
time_context = encoder_hidden_states |
|
time_context_first_timestep = time_context[None, :].reshape( |
|
batch_size, num_frames, -1, time_context.shape[-1] |
|
)[:, 0] |
|
time_context = time_context_first_timestep[None, :].broadcast_to( |
|
|
|
height * width, batch_size, -1, time_context.shape[-1] |
|
) |
|
|
|
time_context = time_context.reshape(height * width * batch_size, -1, time_context.shape[-1]) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
num_frames_emb = torch.arange(num_frames, device=hidden_states.device) |
|
num_frames_emb = num_frames_emb.repeat(batch_size, 1) |
|
num_frames_emb = num_frames_emb.reshape(-1) |
|
t_emb = self.time_proj(num_frames_emb) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=hidden_states.dtype) |
|
|
|
emb = self.time_pos_embed(t_emb) |
|
emb = emb[:, None, :] |
|
|
|
|
|
for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
block, |
|
hidden_states, |
|
None, |
|
encoder_hidden_states, |
|
None, |
|
use_reentrant=False, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
hidden_states_mix = hidden_states |
|
hidden_states_mix = hidden_states_mix + emb |
|
|
|
hidden_states_mix = temporal_block( |
|
hidden_states_mix, |
|
num_frames=num_frames, |
|
encoder_hidden_states=time_context, |
|
) |
|
hidden_states = self.time_mixer( |
|
x_spatial=hidden_states, |
|
x_temporal=hidden_states_mix, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
|
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
output = hidden_states + residual |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return TransformerTemporalModelOutput(sample=output) |
|
|