|
import spaces |
|
import datetime |
|
import uuid |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
from scipy.interpolate import interp1d, PchipInterpolator |
|
from packaging import version |
|
|
|
import torch |
|
import torchvision |
|
import gradio as gr |
|
|
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils import load_image, export_to_video, export_to_gif |
|
|
|
import os |
|
import sys |
|
sys.path.insert(0, os.getcwd()) |
|
from models_diffusers.controlnet_svd import ControlNetSVDModel |
|
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel |
|
from pipelines.pipeline_stable_video_diffusion_interp_control import StableVideoDiffusionInterpControlPipeline |
|
from gradio_demo.utils_drag import * |
|
|
|
import warnings |
|
print("gr file", gr.__file__) |
|
|
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
|
|
os.makedirs("checkpoints", exist_ok=True) |
|
|
|
snapshot_download( |
|
"wwen1997/framer_512x320", |
|
local_dir="checkpoints/framer_512x320", |
|
token=os.environ["TOKEN"], |
|
) |
|
|
|
snapshot_download( |
|
"stabilityai/stable-video-diffusion-img2vid-xt", |
|
local_dir="checkpoints/stable-video-diffusion-img2vid-xt", |
|
token=os.environ["TOKEN"], |
|
) |
|
|
|
|
|
def get_args(): |
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--min_guidance_scale", type=float, default=1.0) |
|
parser.add_argument("--max_guidance_scale", type=float, default=3.0) |
|
parser.add_argument("--middle_max_guidance", type=int, default=0, choices=[0, 1]) |
|
parser.add_argument("--with_control", type=int, default=1, choices=[0, 1]) |
|
|
|
parser.add_argument("--controlnet_cond_scale", type=float, default=1.0) |
|
|
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
default='videoswap', |
|
) |
|
|
|
parser.add_argument( |
|
"--model", type=str, |
|
default="checkpoints/framer_512x320", |
|
help="Path to model.", |
|
) |
|
|
|
parser.add_argument("--output_dir", type=str, default="gradio_demo/outputs", help="Path to the output video.") |
|
|
|
parser.add_argument("--seed", type=int, default=42, help="random seed.") |
|
|
|
parser.add_argument("--noise_aug", type=float, default=0.02) |
|
|
|
parser.add_argument("--num_frames", type=int, default=14) |
|
parser.add_argument("--frame_interval", type=int, default=2) |
|
|
|
parser.add_argument("--width", type=int, default=512) |
|
parser.add_argument("--height", type=int, default=320) |
|
|
|
parser.add_argument( |
|
"--num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def interpolate_trajectory(points, n_points): |
|
x = [point[0] for point in points] |
|
y = [point[1] for point in points] |
|
|
|
t = np.linspace(0, 1, len(points)) |
|
|
|
|
|
|
|
fx = PchipInterpolator(t, x) |
|
fy = PchipInterpolator(t, y) |
|
|
|
new_t = np.linspace(0, 1, n_points) |
|
|
|
new_x = fx(new_t) |
|
new_y = fy(new_t) |
|
new_points = list(zip(new_x, new_y)) |
|
|
|
return new_points |
|
|
|
|
|
def gen_gaussian_heatmap(imgSize=200): |
|
circle_img = np.zeros((imgSize, imgSize), np.float32) |
|
circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1) |
|
|
|
isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32) |
|
|
|
for i in range(imgSize): |
|
for j in range(imgSize): |
|
isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp( |
|
-1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2))) |
|
|
|
isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask |
|
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32) |
|
isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8) |
|
|
|
return isotropicGrayscaleImage |
|
|
|
|
|
def get_vis_image( |
|
target_size=(512 , 512), points=None, side=20, |
|
num_frames=14, |
|
|
|
): |
|
|
|
|
|
vis_images = [] |
|
heatmap = gen_gaussian_heatmap() |
|
|
|
trajectory_list = [] |
|
radius_list = [] |
|
|
|
for index, point in enumerate(points): |
|
trajectories = [[int(i[0]), int(i[1])] for i in point] |
|
trajectory_list.append(trajectories) |
|
|
|
radius = 20 |
|
radius_list.append(radius) |
|
|
|
if len(trajectory_list) == 0: |
|
vis_images = [Image.fromarray(np.zeros(target_size, np.uint8)) for _ in range(num_frames)] |
|
return vis_images |
|
|
|
for idxx, point in enumerate(trajectory_list[0]): |
|
new_img = np.zeros(target_size, np.uint8) |
|
vis_img = new_img.copy() |
|
|
|
|
|
if idxx >= args.num_frames: |
|
break |
|
|
|
|
|
for cc, (trajectory, radius) in enumerate(zip(trajectory_list, radius_list)): |
|
|
|
center_coordinate = trajectory[idxx] |
|
trajectory_ = trajectory[:idxx] |
|
side = min(radius, 50) |
|
|
|
y1 = max(center_coordinate[1] - side,0) |
|
y2 = min(center_coordinate[1] + side, target_size[0] - 1) |
|
x1 = max(center_coordinate[0] - side, 0) |
|
x2 = min(center_coordinate[0] + side, target_size[1] - 1) |
|
|
|
if x2-x1>3 and y2-y1>3: |
|
need_map = cv2.resize(heatmap, (x2-x1, y2-y1)) |
|
new_img[y1:y2, x1:x2] = need_map.copy() |
|
|
|
if cc >= 0: |
|
vis_img[y1:y2,x1:x2] = need_map.copy() |
|
if len(trajectory_) == 1: |
|
vis_img[trajectory_[0][1], trajectory_[0][0]] = 255 |
|
else: |
|
for itt in range(len(trajectory_)-1): |
|
cv2.line(vis_img, (trajectory_[itt][0], trajectory_[itt][1]), (trajectory_[itt+1][0], trajectory_[itt+1][1]), (255, 255, 255), 3) |
|
|
|
img = new_img |
|
|
|
|
|
if len(img.shape) == 2: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) |
|
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_GRAY2RGB) |
|
elif len(img.shape) == 3 and img.shape[2] == 3: |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
|
|
|
|
vis_images.append(Image.fromarray(vis_img)) |
|
|
|
return vis_images |
|
|
|
|
|
def frames_to_video(frames_folder, output_video_path, fps=7): |
|
frame_files = os.listdir(frames_folder) |
|
|
|
frame_files = sorted(frame_files, key=lambda x: int(x.split(".")[0])) |
|
|
|
video = [] |
|
for frame_file in frame_files: |
|
frame_path = os.path.join(frames_folder, frame_file) |
|
frame = torchvision.io.read_image(frame_path) |
|
video.append(frame) |
|
|
|
video = torch.stack(video) |
|
video = rearrange(video, 'T C H W -> T H W C') |
|
torchvision.io.write_video(output_video_path, video, fps=fps) |
|
|
|
|
|
def save_gifs_side_by_side( |
|
batch_output, |
|
validation_control_images, |
|
output_folder, |
|
target_size=(512 , 512), |
|
duration=200, |
|
point_tracks=None, |
|
): |
|
flattened_batch_output = batch_output |
|
def create_gif(image_list, gif_path, duration=100): |
|
pil_images = [validate_and_convert_image(img, target_size=target_size) for img in image_list] |
|
pil_images = [img for img in pil_images if img is not None] |
|
if pil_images: |
|
pil_images[0].save(gif_path, save_all=True, append_images=pil_images[1:], loop=0, duration=duration) |
|
|
|
|
|
tmp_folder = gif_path.replace(".gif", "") |
|
print(tmp_folder) |
|
ensure_dirname(tmp_folder) |
|
tmp_frame_list = [] |
|
for idx, pil_image in enumerate(pil_images): |
|
tmp_frame_path = os.path.join(tmp_folder, f"{idx}.png") |
|
pil_image.save(tmp_frame_path) |
|
tmp_frame_list.append(tmp_frame_path) |
|
|
|
|
|
output_video_path = gif_path.replace(".gif", ".mp4") |
|
frames_to_video(tmp_folder, output_video_path, fps=7) |
|
|
|
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") |
|
gif_paths = [] |
|
|
|
for idx, image_list in enumerate([validation_control_images, flattened_batch_output]): |
|
|
|
gif_path = os.path.join(output_folder.replace("vis_gif.gif", ""), f"temp_{idx}_{timestamp}.gif") |
|
create_gif(image_list, gif_path) |
|
gif_paths.append(gif_path) |
|
|
|
|
|
assert point_tracks is not None |
|
point_tracks_path = gif_path.replace(".gif", ".npy") |
|
np.save(point_tracks_path, point_tracks.cpu().numpy()) |
|
|
|
|
|
def combine_gifs_side_by_side(gif_paths, output_path): |
|
print(gif_paths) |
|
gifs = [Image.open(gif) for gif in gif_paths] |
|
|
|
|
|
frames = [] |
|
for frame_idx in range(gifs[-1].n_frames): |
|
combined_frame = None |
|
for gif in gifs: |
|
if frame_idx >= gif.n_frames: |
|
gif.seek(gif.n_frames - 1) |
|
else: |
|
gif.seek(frame_idx) |
|
if combined_frame is None: |
|
combined_frame = gif.copy() |
|
else: |
|
combined_frame = get_concat_h(combined_frame, gif.copy(), gap=10) |
|
frames.append(combined_frame) |
|
|
|
if output_path.endswith(".mp4"): |
|
video = [torchvision.transforms.functional.pil_to_tensor(frame) for frame in frames] |
|
video = torch.stack(video) |
|
video = rearrange(video, 'T C H W -> T H W C') |
|
torchvision.io.write_video(output_path, video, fps=7) |
|
print(f"Saved video to {output_path}") |
|
else: |
|
frames[0].save(output_path, save_all=True, append_images=frames[1:], loop=0, duration=duration) |
|
|
|
|
|
def get_concat_h(im1, im2, gap=10): |
|
|
|
|
|
|
|
dst = Image.new('RGB', (im1.width + im2.width + gap, max(im1.height, im2.height)), (255, 255, 255)) |
|
dst.paste(im1, (0, 0)) |
|
dst.paste(im2, (im1.width + gap, 0)) |
|
return dst |
|
|
|
|
|
def get_concat_v(im1, im2): |
|
dst = Image.new('RGB', (max(im1.width, im2.width), im1.height + im2.height)) |
|
dst.paste(im1, (0, 0)) |
|
dst.paste(im2, (0, im1.height)) |
|
return dst |
|
|
|
|
|
combined_gif_path = output_folder |
|
combine_gifs_side_by_side(gif_paths, combined_gif_path) |
|
|
|
combined_gif_path_v = gif_path.replace(".gif", "_v.mp4") |
|
ensure_dirname(combined_gif_path_v.replace(".mp4", "")) |
|
combine_gifs_side_by_side(gif_paths, combined_gif_path_v) |
|
|
|
|
|
|
|
|
|
|
|
return combined_gif_path |
|
|
|
|
|
|
|
def validate_and_convert_image(image, target_size=(512 , 512)): |
|
if image is None: |
|
print("Encountered a None image") |
|
return None |
|
|
|
if isinstance(image, torch.Tensor): |
|
|
|
if image.ndim == 3 and image.shape[0] in [1, 3]: |
|
if image.shape[0] == 1: |
|
image = image.repeat(3, 1, 1) |
|
image = image.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() |
|
image = Image.fromarray(image) |
|
else: |
|
print(f"Invalid image tensor shape: {image.shape}") |
|
return None |
|
elif isinstance(image, Image.Image): |
|
|
|
image = image.resize(target_size) |
|
else: |
|
print("Image is not a PIL Image or a PyTorch tensor") |
|
return None |
|
|
|
return image |
|
|
|
|
|
class Drag: |
|
|
|
def __init__(self, device, args, height, width, model_length, dtype=torch.float16, use_sift=False): |
|
self.device = device |
|
self.dtype = dtype |
|
|
|
unet = UNetSpatioTemporalConditionModel.from_pretrained( |
|
os.path.join(args.model, "unet"), |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
custom_resume=True, |
|
) |
|
unet = unet.to(dtype) |
|
|
|
controlnet = ControlNetSVDModel.from_pretrained( |
|
os.path.join(args.model, "controlnet"), |
|
) |
|
controlnet = controlnet.to(dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe = StableVideoDiffusionInterpControlPipeline.from_pretrained( |
|
"checkpoints/stable-video-diffusion-img2vid-xt", |
|
unet=unet, |
|
controlnet=controlnet, |
|
low_cpu_mem_usage=False, |
|
torch_dtype=torch.float16, variant="fp16", local_files_only=True, |
|
) |
|
|
|
self.pipeline = pipe |
|
|
|
|
|
self.height = height |
|
self.width = width |
|
self.args = args |
|
self.model_length = model_length |
|
self.use_sift = use_sift |
|
|
|
@spaces.GPU |
|
def run(self, first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id): |
|
|
|
self.pipeline.to(self.device) |
|
|
|
original_width, original_height = 512, 320 |
|
|
|
|
|
image = Image.open(first_frame_path).convert('RGB') |
|
width, height = image.size |
|
image = image.resize((self.width, self.height)) |
|
|
|
image_end = Image.open(last_frame_path).convert('RGB') |
|
image_end = image_end.resize((self.width, self.height)) |
|
|
|
input_all_points = tracking_points.constructor_args['value'] |
|
|
|
sift_track_update = False |
|
anchor_points_flag = None |
|
|
|
if (len(input_all_points) == 0) and self.use_sift: |
|
sift_track_update = True |
|
controlnet_cond_scale = 0.5 |
|
|
|
from models_diffusers.sift_match import sift_match |
|
from models_diffusers.sift_match import interpolate_trajectory as sift_interpolate_trajectory |
|
|
|
output_file_sift = os.path.join(args.output_dir, "sift.png") |
|
|
|
|
|
pred_tracks = sift_match( |
|
image, |
|
image_end, |
|
thr=0.5, |
|
topk=5, |
|
method="random", |
|
output_path=output_file_sift, |
|
) |
|
|
|
if pred_tracks is not None: |
|
|
|
pred_tracks = sift_interpolate_trajectory(pred_tracks, num_frames=self.model_length) |
|
|
|
anchor_points_flag = torch.zeros((self.model_length, pred_tracks.shape[1])).to(pred_tracks.device) |
|
anchor_points_flag[0] = 1 |
|
anchor_points_flag[-1] = 1 |
|
|
|
pred_tracks = pred_tracks.permute(1, 0, 2) |
|
|
|
else: |
|
|
|
resized_all_points = [ |
|
tuple([ |
|
tuple([int(e1[0] * self.width / original_width), int(e1[1] * self.height / original_height)]) |
|
for e1 in e]) |
|
for e in input_all_points |
|
] |
|
|
|
|
|
|
|
|
|
for idx, splited_track in enumerate(resized_all_points): |
|
if len(splited_track) == 0: |
|
warnings.warn("running without point trajectory control") |
|
continue |
|
|
|
if len(splited_track) == 1: |
|
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1]) |
|
splited_track = tuple([splited_track[0], displacement_point]) |
|
|
|
splited_track = interpolate_trajectory(splited_track, self.model_length) |
|
splited_track = splited_track[:self.model_length] |
|
resized_all_points[idx] = splited_track |
|
|
|
pred_tracks = torch.tensor(resized_all_points) |
|
|
|
vis_images = get_vis_image( |
|
target_size=(self.args.height, self.args.width), |
|
points=pred_tracks, |
|
num_frames=self.model_length, |
|
) |
|
|
|
if len(pred_tracks.shape) != 3: |
|
print("pred_tracks.shape", pred_tracks.shape) |
|
with_control = False |
|
controlnet_cond_scale = 0.0 |
|
else: |
|
with_control = True |
|
pred_tracks = pred_tracks.permute(1, 0, 2).to(self.device, self.dtype) |
|
|
|
point_embedding = None |
|
video_frames = self.pipeline( |
|
image, |
|
image_end, |
|
|
|
with_control=with_control, |
|
point_tracks=pred_tracks, |
|
point_embedding=point_embedding, |
|
with_id_feature=False, |
|
controlnet_cond_scale=controlnet_cond_scale, |
|
|
|
num_frames=14, |
|
width=width, |
|
height=height, |
|
|
|
|
|
motion_bucket_id=motion_bucket_id, |
|
fps=7, |
|
num_inference_steps=30, |
|
|
|
sift_track_update=sift_track_update, |
|
anchor_points_flag=anchor_points_flag, |
|
).frames[0] |
|
|
|
vis_images = [cv2.applyColorMap(np.array(img).astype(np.uint8), cv2.COLORMAP_JET) for img in vis_images] |
|
vis_images = [cv2.cvtColor(np.array(img).astype(np.uint8), cv2.COLOR_BGR2RGB) for img in vis_images] |
|
vis_images = [Image.fromarray(img) for img in vis_images] |
|
|
|
|
|
val_save_dir = os.path.join(args.output_dir, "vis_gif.gif") |
|
save_gifs_side_by_side( |
|
video_frames, |
|
vis_images[:self.model_length], |
|
val_save_dir, |
|
target_size=(self.width, self.height), |
|
duration=110, |
|
point_tracks=pred_tracks, |
|
) |
|
|
|
return val_save_dir |
|
|
|
|
|
def reset_states(first_frame_path, last_frame_path, tracking_points): |
|
first_frame_path = gr.State() |
|
last_frame_path = gr.State() |
|
tracking_points = gr.State() |
|
|
|
return first_frame_path, last_frame_path, tracking_points |
|
|
|
|
|
def preprocess_image(image): |
|
|
|
image_pil = image2pil(image.name) |
|
|
|
raw_w, raw_h = image_pil.size |
|
|
|
|
|
|
|
image_pil = image_pil.resize((512, 320), Image.BILINEAR) |
|
|
|
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png") |
|
|
|
image_pil.save(first_frame_path) |
|
|
|
return first_frame_path, first_frame_path, gr.State() |
|
|
|
|
|
def preprocess_image_end(image_end): |
|
|
|
image_end_pil = image2pil(image_end.name) |
|
|
|
raw_w, raw_h = image_end_pil.size |
|
|
|
|
|
|
|
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR) |
|
|
|
last_frame_path = os.path.join(args.output_dir, f"last_frame_{str(uuid.uuid4())[:4]}.png") |
|
|
|
image_end_pil.save(last_frame_path) |
|
|
|
return last_frame_path, last_frame_path, gr.State() |
|
|
|
|
|
def add_drag(tracking_points): |
|
tracking_points.constructor_args['value'].append([]) |
|
return tracking_points |
|
|
|
|
|
def delete_last_drag(tracking_points, first_frame_path, last_frame_path): |
|
tracking_points.constructor_args['value'].pop() |
|
transparent_background = Image.open(first_frame_path).convert('RGBA') |
|
transparent_background_end = Image.open(last_frame_path).convert('RGBA') |
|
w, h = transparent_background.size |
|
transparent_layer = np.zeros((h, w, 4)) |
|
|
|
for track in tracking_points.constructor_args['value']: |
|
if len(track) > 1: |
|
for i in range(len(track)-1): |
|
start_point = track[i] |
|
end_point = track[i+1] |
|
vx = end_point[0] - start_point[0] |
|
vy = end_point[1] - start_point[1] |
|
arrow_length = np.sqrt(vx**2 + vy**2) |
|
if i == len(track)-2: |
|
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length) |
|
else: |
|
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,) |
|
else: |
|
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1) |
|
|
|
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8)) |
|
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer) |
|
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer) |
|
|
|
return tracking_points, trajectory_map, trajectory_map_end |
|
|
|
|
|
def delete_last_step(tracking_points, first_frame_path, last_frame_path): |
|
tracking_points.constructor_args['value'][-1].pop() |
|
transparent_background = Image.open(first_frame_path).convert('RGBA') |
|
transparent_background_end = Image.open(last_frame_path).convert('RGBA') |
|
w, h = transparent_background.size |
|
transparent_layer = np.zeros((h, w, 4)) |
|
|
|
for track in tracking_points.constructor_args['value']: |
|
if len(track) > 1: |
|
for i in range(len(track)-1): |
|
start_point = track[i] |
|
end_point = track[i+1] |
|
vx = end_point[0] - start_point[0] |
|
vy = end_point[1] - start_point[1] |
|
arrow_length = np.sqrt(vx**2 + vy**2) |
|
if i == len(track)-2: |
|
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length) |
|
else: |
|
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,) |
|
else: |
|
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1) |
|
|
|
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8)) |
|
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer) |
|
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer) |
|
|
|
return tracking_points, trajectory_map, trajectory_map_end |
|
|
|
|
|
def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData): |
|
print(f"You selected {evt.value} at {evt.index} from {evt.target}") |
|
tracking_points.constructor_args['value'][-1].append(evt.index) |
|
|
|
transparent_background = Image.open(first_frame_path).convert('RGBA') |
|
transparent_background_end = Image.open(last_frame_path).convert('RGBA') |
|
|
|
w, h = transparent_background.size |
|
transparent_layer = 0 |
|
for idx, track in enumerate(tracking_points.constructor_args['value']): |
|
|
|
|
|
|
|
mask = np.zeros((320, 512, 3)) |
|
color = color_list[idx+1] |
|
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer |
|
|
|
if len(track) > 1: |
|
for i in range(len(track)-1): |
|
start_point = track[i] |
|
end_point = track[i+1] |
|
vx = end_point[0] - start_point[0] |
|
vy = end_point[1] - start_point[1] |
|
arrow_length = np.sqrt(vx**2 + vy**2) |
|
if i == len(track)-2: |
|
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length) |
|
else: |
|
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,) |
|
else: |
|
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1) |
|
|
|
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8)) |
|
alpha_coef = 0.99 |
|
im2_data = transparent_layer.getdata() |
|
new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data] |
|
transparent_layer.putdata(new_im2_data) |
|
|
|
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer) |
|
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer) |
|
|
|
return tracking_points, trajectory_map, trajectory_map_end |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
args = get_args() |
|
ensure_dirname(args.output_dir) |
|
|
|
|
|
color_list = [] |
|
for i in range(20): |
|
color = np.concatenate([np.random.random(4)*255], axis=0) |
|
color_list.append(color) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("""<h1 align="center">Framer: Interactive Frame Interpolation</h1><br>""") |
|
|
|
gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2410.18978'><b>Framer: Interactive Frame Interpolation</b></a>.<br> |
|
Github Repo can be found at https://github.com/aim-uofa/Framer<br> |
|
The template is inspired by DragAnything.""") |
|
|
|
gr.Image(label="Framer: Interactive Frame Interpolation", value="assets/demos.gif", height=432, width=768) |
|
|
|
gr.Markdown("""## Usage: <br> |
|
1. Upload images<br> |
|
  1.1 Upload the start image via the "Upload Start Image" button.<br> |
|
  1.2. Upload the end image via the "Upload End Image" button.<br> |
|
2. (Optional) Draw some drags.<br> |
|
  2.1. Click "Add Drag Trajectory" to add the motion trajectory.<br> |
|
  2.2. You can click several points on either start or end image to forms a path.<br> |
|
  2.3. Click "Delete last drag" to delete the whole lastest path.<br> |
|
  2.4. Click "Delete last step" to delete the lastest clicked control point.<br> |
|
3. Interpolate the images (according the path) with a click on "Run" button. <br>""") |
|
|
|
|
|
Framer = Drag("cuda", args, 320, 512, 14) |
|
first_frame_path = gr.State() |
|
last_frame_path = gr.State() |
|
tracking_points = gr.State() |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"]) |
|
image_end_upload_button = gr.UploadButton(label="Upload End Image", file_types=["image"]) |
|
|
|
add_drag_button = gr.Button(value="Add New Drag Trajectory") |
|
reset_button = gr.Button(value="Reset") |
|
run_button = gr.Button(value="Run") |
|
delete_last_drag_button = gr.Button(value="Delete last drag") |
|
delete_last_step_button = gr.Button(value="Delete last step") |
|
|
|
with gr.Column(scale=7): |
|
with gr.Row(): |
|
with gr.Column(scale=6): |
|
input_image = gr.Image( |
|
label="start frame", |
|
interactive=True, |
|
height=320, |
|
width=512, |
|
) |
|
|
|
with gr.Column(scale=6): |
|
input_image_end = gr.Image( |
|
label="end frame", |
|
interactive=True, |
|
height=320, |
|
width=512, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
controlnet_cond_scale = gr.Slider( |
|
label='Control Scale', |
|
minimum=0.0, |
|
maximum=10, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
|
|
motion_bucket_id = gr.Slider( |
|
label='Motion Bucket', |
|
minimum=1, |
|
maximum=180, |
|
step=1, |
|
value=100, |
|
) |
|
|
|
with gr.Column(scale=5): |
|
output_video = gr.Image( |
|
label="Output Video", |
|
height=320, |
|
width=1152, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
gr.Markdown(""" |
|
## Citation |
|
```bibtex |
|
@article{wang2024framer, |
|
title={Framer: Interactive Frame Interpolation}, |
|
author={Wang, Wen and Wang, Qiuyu and Zheng, Kecheng and Ouyang, Hao and Chen, Zhekai and Gong, Biao and Chen, Hao and Shen, Yujun and Shen, Chunhua}, |
|
journal={arXiv preprint https://arxiv.org/abs/2410.18978}, |
|
year={2024} |
|
} |
|
``` |
|
""") |
|
|
|
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points]) |
|
|
|
image_end_upload_button.upload(preprocess_image_end, image_end_upload_button, [input_image_end, last_frame_path, tracking_points]) |
|
|
|
add_drag_button.click(add_drag, tracking_points, [tracking_points, ]) |
|
|
|
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end]) |
|
|
|
delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end]) |
|
|
|
reset_button.click(reset_states, [first_frame_path, last_frame_path, tracking_points], [first_frame_path, last_frame_path, tracking_points]) |
|
|
|
input_image.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end]) |
|
|
|
input_image_end.select(add_tracking_points, [tracking_points, first_frame_path, last_frame_path], [tracking_points, input_image, input_image_end]) |
|
|
|
run_button.click(Framer.run, [first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id], output_video) |
|
|
|
demo.launch() |
|
|