|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
|
|
from diffusers.models import AutoencoderKLTemporalDecoder |
|
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel |
|
from diffusers.schedulers import EulerDiscreteScheduler |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
|
|
from models_diffusers.controlnet_svd import ControlNetSVDModel |
|
|
|
from models_diffusers.utils import generate_gassian_heatmap |
|
|
|
from einops import rearrange |
|
from models_diffusers.sift_match import point_tracking, interpolate_trajectory |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _append_dims(x, target_dims): |
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" |
|
dims_to_append = target_dims - x.ndim |
|
if dims_to_append < 0: |
|
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") |
|
return x[(...,) + (None,) * dims_to_append] |
|
|
|
|
|
def tensor2vid(video: torch.Tensor, processor, output_type="np"): |
|
|
|
|
|
|
|
batch_size, channels, num_frames, height, width = video.shape |
|
outputs = [] |
|
for batch_idx in range(batch_size): |
|
batch_vid = video[batch_idx].permute(1, 0, 2, 3) |
|
batch_output = processor.postprocess(batch_vid, output_type) |
|
|
|
outputs.append(batch_output) |
|
|
|
return outputs |
|
|
|
|
|
@dataclass |
|
class StableVideoDiffusionInterpControlPipelineOutput(BaseOutput): |
|
r""" |
|
Output class for zero-shot text-to-video pipeline. |
|
|
|
Args: |
|
frames (`[List[PIL.Image.Image]`, `np.ndarray`]): |
|
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, |
|
num_channels)`. |
|
""" |
|
|
|
frames: Union[List[PIL.Image.Image], np.ndarray] |
|
|
|
|
|
class StableVideoDiffusionInterpControlPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline to generate video from an input image using Stable Video Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): |
|
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)). |
|
unet ([`UNetSpatioTemporalConditionModel`]): |
|
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents. |
|
scheduler ([`EulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images. |
|
""" |
|
|
|
model_cpu_offload_seq = "image_encoder->unet->vae" |
|
_callback_tensor_inputs = ["latents"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKLTemporalDecoder, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
unet: UNetSpatioTemporalConditionModel, |
|
scheduler: EulerDiscreteScheduler, |
|
feature_extractor: CLIPImageProcessor, |
|
controlnet: Optional[ControlNetSVDModel] = None, |
|
pose_encoder: Optional[torch.nn.Module] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
image_encoder=image_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
controlnet=controlnet, |
|
pose_encoder=pose_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.image_processor.pil_to_numpy(image) |
|
image = self.image_processor.numpy_to_pt(image) |
|
|
|
|
|
|
|
image = image * 2.0 - 1.0 |
|
image = _resize_with_antialiasing(image, (224, 224)) |
|
image = (image + 1.0) / 2.0 |
|
|
|
|
|
image = self.feature_extractor( |
|
images=image, |
|
do_normalize=True, |
|
do_center_crop=False, |
|
do_resize=False, |
|
do_rescale=False, |
|
return_tensors="pt", |
|
).pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeddings = self.image_encoder(image).image_embeds |
|
image_embeddings = image_embeddings.unsqueeze(1) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) |
|
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
negative_image_embeddings = torch.zeros_like(image_embeddings) |
|
|
|
|
|
|
|
|
|
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) |
|
|
|
return image_embeddings |
|
|
|
def _encode_vae_image( |
|
self, |
|
image: torch.Tensor, |
|
device, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
): |
|
image = image.to(device=device) |
|
image_latents = self.vae.encode(image).latent_dist.mode() |
|
|
|
if do_classifier_free_guidance: |
|
negative_image_latents = torch.zeros_like(image_latents) |
|
|
|
|
|
|
|
|
|
image_latents = torch.cat([negative_image_latents, image_latents]) |
|
|
|
|
|
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) |
|
|
|
return image_latents |
|
|
|
def _get_add_time_ids( |
|
self, |
|
fps, |
|
motion_bucket_id, |
|
noise_aug_strength, |
|
dtype, |
|
batch_size, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
): |
|
add_time_ids = [fps, motion_bucket_id, noise_aug_strength] |
|
|
|
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) |
|
|
|
if do_classifier_free_guidance: |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids]) |
|
|
|
return add_time_ids |
|
|
|
def decode_latents(self, latents, num_frames, decode_chunk_size=14): |
|
|
|
latents = latents.flatten(0, 1) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
|
accepts_num_frames = "num_frames" in set(inspect.signature(self.vae.forward).parameters.keys()) |
|
|
|
|
|
frames = [] |
|
for i in range(0, latents.shape[0], decode_chunk_size): |
|
num_frames_in = latents[i : i + decode_chunk_size].shape[0] |
|
decode_kwargs = {} |
|
if accepts_num_frames: |
|
|
|
decode_kwargs["num_frames"] = num_frames_in |
|
|
|
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample |
|
frames.append(frame) |
|
frames = torch.cat(frames, dim=0) |
|
|
|
|
|
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) |
|
|
|
|
|
frames = frames.float() |
|
return frames |
|
|
|
def check_inputs(self, image, height, width): |
|
if ( |
|
not isinstance(image, torch.Tensor) |
|
and not isinstance(image, PIL.Image.Image) |
|
and not isinstance(image, list) |
|
): |
|
raise ValueError( |
|
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" |
|
f" {type(image)}" |
|
) |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_frames, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_frames, |
|
num_channels_latents // 2, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], |
|
image_end: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], |
|
|
|
with_control: bool = True, |
|
point_tracks: Optional[torch.FloatTensor] = None, |
|
point_embedding: Optional[torch.FloatTensor] = None, |
|
with_id_feature: bool = False, |
|
controlnet_cond_scale: float = 1.0, |
|
controlnet_step_range: List[float] = [0, 1], |
|
|
|
height: int = 576, |
|
width: int = 1024, |
|
num_frames: Optional[int] = None, |
|
num_inference_steps: int = 25, |
|
min_guidance_scale: float = 1.0, |
|
max_guidance_scale: float = 3.0, |
|
middle_max_guidance: bool = False, |
|
fps: int = 6, |
|
motion_bucket_id: int = 127, |
|
noise_aug_strength: int = 0.02, |
|
decode_chunk_size: Optional[int] = None, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
return_dict: bool = True, |
|
|
|
sift_track_update: bool = False, |
|
sift_track_update_with_time: bool = True, |
|
sift_track_feat_idx: List[int] = [2, ], |
|
sift_track_dist: int = 5, |
|
sift_track_double_check_thr: float = 2, |
|
anchor_points_flag: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): |
|
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with |
|
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_frames (`int`, *optional*): |
|
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt` |
|
num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. This parameter is modulated by `strength`. |
|
min_guidance_scale (`float`, *optional*, defaults to 1.0): |
|
The minimum guidance scale. Used for the classifier free guidance with first frame. |
|
max_guidance_scale (`float`, *optional*, defaults to 3.0): |
|
The maximum guidance scale. Used for the classifier free guidance with last frame. |
|
fps (`int`, *optional*, defaults to 7): |
|
Frames per second. The rate at which the generated images shall be exported to a video after generation. |
|
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training. |
|
motion_bucket_id (`int`, *optional*, defaults to 127): |
|
The motion bucket ID. Used as conditioning for the generation. The higher the number the more motion will be in the video. |
|
noise_aug_strength (`int`, *optional*, defaults to 0.02): |
|
The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion. |
|
decode_chunk_size (`int`, *optional*): |
|
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency |
|
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once |
|
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableVideoDiffusionInterpControlPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionInterpControlPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list of list with the generated frames. |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import StableVideoDiffusionPipeline |
|
from diffusers.utils import load_image, export_to_video |
|
|
|
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16") |
|
pipe.to("cuda") |
|
|
|
image = load_image("https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200") |
|
image = image.resize((1024, 576)) |
|
|
|
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0] |
|
export_to_video(frames, "generated.mp4", fps=7) |
|
``` |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames |
|
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames |
|
|
|
|
|
self.check_inputs(image, height, width) |
|
self.check_inputs(image_end, height, width) |
|
|
|
|
|
if isinstance(image, PIL.Image.Image): |
|
batch_size = 1 |
|
elif isinstance(image, list): |
|
batch_size = len(image) |
|
else: |
|
batch_size = image.shape[0] |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = max_guidance_scale > 1.0 |
|
|
|
|
|
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance) |
|
image_end_embeddings = self._encode_image(image_end, device, num_videos_per_prompt, do_classifier_free_guidance) |
|
|
|
|
|
|
|
|
|
fps = fps - 1 |
|
|
|
|
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
noise = randn_tensor(image.shape, generator=generator, device=image.device, dtype=image.dtype) |
|
image = image + noise_aug_strength * noise |
|
|
|
image_end = self.image_processor.preprocess(image_end, height=height, width=width) |
|
noise = randn_tensor(image_end.shape, generator=generator, device=image_end.device, dtype=image_end.dtype) |
|
image_end = image_end + noise_aug_strength * noise |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if with_control: |
|
|
|
video_gaussion_map = generate_gassian_heatmap(point_tracks, image_size=(width, height)) |
|
controlnet_image = video_gaussion_map.unsqueeze(0) |
|
controlnet_image = controlnet_image.to(device, dtype=image_embeddings.dtype) |
|
controlnet_image = torch.cat([controlnet_image] * 2, dim=0) |
|
|
|
point_embedding = point_embedding.to(device).to(image_embeddings.dtype) if point_embedding is not None else None |
|
point_tracks = point_tracks.to(device).to(image_embeddings.dtype) |
|
|
|
assert point_tracks.shape[0] == num_frames, f"point_tracks.shape[0] != num_frames, {point_tracks.shape[0]} != {num_frames}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
image_latents = self._encode_vae_image(image, device, num_videos_per_prompt, do_classifier_free_guidance) |
|
image_latents = image_latents.to(image_embeddings.dtype) |
|
|
|
image_end_latents = self._encode_vae_image(image_end, device, num_videos_per_prompt, do_classifier_free_guidance) |
|
image_end_latents = image_end_latents.to(image_end_embeddings.dtype) |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
|
|
|
|
|
|
|
|
|
|
|
|
added_time_ids = self._get_add_time_ids( |
|
fps, |
|
motion_bucket_id, |
|
noise_aug_strength, |
|
image_embeddings.dtype, |
|
batch_size, |
|
num_videos_per_prompt, |
|
do_classifier_free_guidance, |
|
) |
|
added_time_ids = added_time_ids.to(device) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_frames, |
|
num_channels_latents, |
|
height, |
|
width, |
|
image_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
|
|
image_latents = image_latents.unsqueeze(1) |
|
bsz, num_frames, _, latent_h, latent_w = latents.shape |
|
bsz_cfg = bsz * 2 |
|
mask_token = self.unet.mask_token |
|
conditional_latents_mask = mask_token.repeat(bsz_cfg, num_frames-2, 1, latent_h, latent_w) |
|
image_end_latents = image_end_latents.unsqueeze(1) |
|
image_latents = torch.cat([image_latents, conditional_latents_mask, image_end_latents], dim=1) |
|
|
|
|
|
mask_channel = torch.ones_like(image_latents[:, :, 0:1, :, :]) |
|
mask_channel[:, 0:1, :, :, :] = 0 |
|
mask_channel[:, -1:, :, :, :] = 0 |
|
image_latents = torch.cat([image_latents, mask_channel], dim=2) |
|
|
|
|
|
image_embeddings = torch.cat([image_embeddings, image_end_embeddings], dim=1) |
|
|
|
|
|
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) |
|
if middle_max_guidance: |
|
|
|
guidance_scale = torch.cat([guidance_scale, guidance_scale.flip(1)], dim=1) |
|
|
|
guidance_scale = torch.nn.functional.interpolate(guidance_scale.unsqueeze(0), size=num_frames, mode='linear', align_corners=False)[0] |
|
|
|
|
|
guidance_scale = guidance_scale.to(device, latents.dtype) |
|
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1) |
|
guidance_scale = _append_dims(guidance_scale, latents.ndim) |
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
|
|
if with_control and sift_track_update: |
|
num_tracks = point_tracks.shape[1] |
|
anchor_point_dict = {} |
|
for frame_idx in range(num_frames): |
|
anchor_point_dict[frame_idx] = {} |
|
for point_idx in range(num_tracks): |
|
|
|
if frame_idx in [0, num_frames - 1]: |
|
anchor_point_dict[frame_idx][point_idx] = point_tracks[frame_idx][point_idx] |
|
else: |
|
anchor_point_dict[frame_idx][point_idx] = None |
|
|
|
with_control_global = with_control |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if with_control_global: |
|
if controlnet_step_range[0] <= i / num_inference_steps < controlnet_step_range[1]: |
|
with_control = True |
|
else: |
|
with_control = False |
|
|
|
|
|
if with_control and sift_track_update and i > 0: |
|
|
|
track_list = [] |
|
for point_idx in range(num_tracks): |
|
|
|
current_track = [] |
|
current_time_to_interp = [] |
|
for frame_idx in range(num_frames): |
|
if anchor_points_flag[frame_idx][point_idx] == 1: |
|
current_track.append(anchor_point_dict[frame_idx][point_idx].cpu()) |
|
if sift_track_update_with_time: |
|
current_time_to_interp.append(frame_idx / (num_frames - 1)) |
|
|
|
current_track = torch.stack(current_track, dim=0).unsqueeze(1) |
|
|
|
current_time_to_interp = np.array(current_time_to_interp) if sift_track_update_with_time else None |
|
current_track = interpolate_trajectory(current_track, num_frames=num_frames, t=current_time_to_interp) |
|
track_list.append(current_track) |
|
point_tracks = torch.concat(track_list, dim=1).to(device).to(image_embeddings.dtype) |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) |
|
|
|
down_block_res_samples = mid_block_res_sample = None |
|
if with_control: |
|
if i == 0: |
|
print(f"controlnet_cond_scale: {controlnet_cond_scale}") |
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=image_embeddings, |
|
controlnet_cond=controlnet_image, |
|
added_time_ids=added_time_ids, |
|
conditioning_scale=controlnet_cond_scale, |
|
point_embedding=point_embedding if with_id_feature else None, |
|
point_tracks=point_tracks, |
|
guess_mode=False, |
|
return_dict=False, |
|
) |
|
else: |
|
if i == 0: |
|
print("Controlnet is not used") |
|
|
|
kwargs = {} |
|
|
|
outputs = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=image_embeddings, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_time_ids=added_time_ids, |
|
return_dict=False, |
|
**kwargs, |
|
) |
|
|
|
noise_pred, intermediate_features = outputs |
|
|
|
if with_control and sift_track_update: |
|
|
|
matching_features = [] |
|
for feat_idx in sift_track_feat_idx: |
|
feat = intermediate_features[feat_idx] |
|
feat = F.interpolate(feat, (height, width), mode='bilinear') |
|
matching_features.append(feat) |
|
|
|
matching_features = torch.cat(matching_features, dim=1) |
|
|
|
|
|
|
|
|
|
assert do_classifier_free_guidance |
|
matching_features = rearrange(matching_features, '(b f) c h w -> b f c h w', b=2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matching_features = matching_features[0] + self.guidance_scale.squeeze(0) * (matching_features[1] - matching_features[0]) |
|
matching_features = matching_features.unsqueeze(dim=0) |
|
|
|
|
|
feature_start = matching_features[:, 0] |
|
feature_end = matching_features[:, -1] |
|
hanlde_points_start = point_tracks[0] |
|
hanlde_points_end = point_tracks[-1] |
|
for frame_idx in range(1, num_frames - 1): |
|
feature_frame = matching_features[:, frame_idx] |
|
handle_points = point_tracks[frame_idx] |
|
|
|
handle_points_forward = point_tracking(feature_start, feature_frame, handle_points, hanlde_points_start, sift_track_dist) |
|
|
|
handle_points_backward = point_tracking(feature_end, feature_frame, handle_points, hanlde_points_end, sift_track_dist) |
|
|
|
|
|
for point_idx, (point_forward, point_backward) in enumerate(zip(handle_points_forward, handle_points_backward)): |
|
if torch.norm(point_forward - point_backward) < sift_track_double_check_thr: |
|
|
|
|
|
anchor_point_dict[frame_idx][point_idx] = (point_forward + point_backward) / 2 |
|
anchor_points_flag[frame_idx][point_idx] = 1 |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if not output_type == "latent": |
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
|
|
|
|
frames = self.decode_latents(latents, num_frames, decode_chunk_size) |
|
frames = tensor2vid(frames, self.image_processor, output_type=output_type) |
|
else: |
|
frames = latents |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return frames |
|
|
|
return StableVideoDiffusionInterpControlPipelineOutput(frames=frames) |
|
|
|
|
|
|
|
|
|
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True): |
|
h, w = input.shape[-2:] |
|
factors = (h / size[0], w / size[1]) |
|
|
|
|
|
|
|
sigmas = ( |
|
max((factors[0] - 1.0) / 2.0, 0.001), |
|
max((factors[1] - 1.0) / 2.0, 0.001), |
|
) |
|
|
|
|
|
|
|
|
|
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) |
|
|
|
|
|
if (ks[0] % 2) == 0: |
|
ks = ks[0] + 1, ks[1] |
|
|
|
if (ks[1] % 2) == 0: |
|
ks = ks[0], ks[1] + 1 |
|
|
|
input = _gaussian_blur2d(input, ks, sigmas) |
|
|
|
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) |
|
return output |
|
|
|
|
|
def _compute_padding(kernel_size): |
|
"""Compute padding tuple.""" |
|
|
|
|
|
if len(kernel_size) < 2: |
|
raise AssertionError(kernel_size) |
|
computed = [k - 1 for k in kernel_size] |
|
|
|
|
|
out_padding = 2 * len(kernel_size) * [0] |
|
|
|
for i in range(len(kernel_size)): |
|
computed_tmp = computed[-(i + 1)] |
|
|
|
pad_front = computed_tmp // 2 |
|
pad_rear = computed_tmp - pad_front |
|
|
|
out_padding[2 * i + 0] = pad_front |
|
out_padding[2 * i + 1] = pad_rear |
|
|
|
return out_padding |
|
|
|
|
|
def _filter2d(input, kernel): |
|
|
|
b, c, h, w = input.shape |
|
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) |
|
|
|
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) |
|
|
|
height, width = tmp_kernel.shape[-2:] |
|
|
|
padding_shape: list[int] = _compute_padding([height, width]) |
|
input = torch.nn.functional.pad(input, padding_shape, mode="reflect") |
|
|
|
|
|
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) |
|
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) |
|
|
|
|
|
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) |
|
|
|
out = output.view(b, c, h, w) |
|
return out |
|
|
|
|
|
def _gaussian(window_size: int, sigma): |
|
if isinstance(sigma, float): |
|
sigma = torch.tensor([[sigma]]) |
|
|
|
batch_size = sigma.shape[0] |
|
|
|
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) |
|
|
|
if window_size % 2 == 0: |
|
x = x + 0.5 |
|
|
|
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) |
|
|
|
return gauss / gauss.sum(-1, keepdim=True) |
|
|
|
|
|
def _gaussian_blur2d(input, kernel_size, sigma): |
|
if isinstance(sigma, tuple): |
|
sigma = torch.tensor([sigma], dtype=input.dtype) |
|
else: |
|
sigma = sigma.to(dtype=input.dtype) |
|
|
|
ky, kx = int(kernel_size[0]), int(kernel_size[1]) |
|
bs = sigma.shape[0] |
|
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1)) |
|
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1)) |
|
out_x = _filter2d(input, kernel_x[..., None, :]) |
|
out = _filter2d(out_x, kernel_y[..., None]) |
|
|
|
return out |
|
|