Spaces:
Running
Running
import torch | |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
from xora.models.transformers.transformer3d import Transformer3DModel | |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
from xora.schedulers.rf import RectifiedFlowScheduler | |
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline | |
from pathlib import Path | |
from transformers import T5EncoderModel, T5Tokenizer | |
import safetensors.torch | |
import json | |
import argparse | |
from xora.utils.conditioning_method import ConditioningMethod | |
import os | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import random | |
RECOMMENDED_RESOLUTIONS = [ | |
(704, 1216, 41), | |
(704, 1088, 49), | |
(640, 1056, 57), | |
(608, 992, 65), | |
(608, 896, 73), | |
(544, 896, 81), | |
(544, 832, 89), | |
(512, 800, 97), | |
(512, 768, 97), | |
(480, 800, 105), | |
(480, 736, 113), | |
(480, 704, 121), | |
(448, 704, 129), | |
(448, 672, 137), | |
(416, 640, 153), | |
(384, 672, 161), | |
(384, 640, 169), | |
(384, 608, 177), | |
(384, 576, 185), | |
(352, 608, 193), | |
(352, 576, 201), | |
(352, 544, 209), | |
(352, 512, 225), | |
(352, 512, 233), | |
(320, 544, 241), | |
(320, 512, 249), | |
(320, 512, 257), | |
] | |
def load_vae(vae_dir): | |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors" | |
vae_config_path = vae_dir / "config.json" | |
with open(vae_config_path, "r") as f: | |
vae_config = json.load(f) | |
vae = CausalVideoAutoencoder.from_config(vae_config) | |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) | |
vae.load_state_dict(vae_state_dict) | |
if torch.cuda.is_available(): | |
vae = vae.cuda() | |
return vae.to(torch.bfloat16) | |
def load_unet(unet_dir): | |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors" | |
unet_config_path = unet_dir / "config.json" | |
transformer_config = Transformer3DModel.load_config(unet_config_path) | |
transformer = Transformer3DModel.from_config(transformer_config) | |
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) | |
transformer.load_state_dict(unet_state_dict, strict=True) | |
if torch.cuda.is_available(): | |
transformer = transformer.cuda() | |
return transformer | |
def load_scheduler(scheduler_dir): | |
scheduler_config_path = scheduler_dir / "scheduler_config.json" | |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
return RectifiedFlowScheduler.from_config(scheduler_config) | |
def center_crop_and_resize(frame, target_height, target_width): | |
h, w, _ = frame.shape | |
aspect_ratio_target = target_width / target_height | |
aspect_ratio_frame = w / h | |
if aspect_ratio_frame > aspect_ratio_target: | |
new_width = int(h * aspect_ratio_target) | |
x_start = (w - new_width) // 2 | |
frame_cropped = frame[:, x_start : x_start + new_width] | |
else: | |
new_height = int(w / aspect_ratio_target) | |
y_start = (h - new_height) // 2 | |
frame_cropped = frame[y_start : y_start + new_height, :] | |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) | |
return frame_resized | |
def load_video_to_tensor_with_resize(video_path, target_height, target_width): | |
cap = cv2.VideoCapture(video_path) | |
frames = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
if target_height is not None: | |
frame_resized = center_crop_and_resize( | |
frame_rgb, target_height, target_width | |
) | |
else: | |
frame_resized = frame_rgb | |
frames.append(frame_resized) | |
cap.release() | |
video_np = (np.array(frames) / 127.5) - 1.0 | |
video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float() | |
return video_tensor | |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): | |
image = Image.open(image_path).convert("RGB") | |
image_np = np.array(image) | |
frame_resized = center_crop_and_resize(image_np, target_height, target_width) | |
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() | |
frame_tensor = (frame_tensor / 127.5) - 1.0 | |
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) | |
return frame_tensor.unsqueeze(0).unsqueeze(2) | |
def main(): | |
parser = argparse.ArgumentParser( | |
description="Load models from separate directories and run the pipeline." | |
) | |
# Directories | |
parser.add_argument( | |
"--ckpt_dir", | |
type=str, | |
required=True, | |
help="Path to the directory containing unet, vae, and scheduler subdirectories", | |
) | |
parser.add_argument( | |
"--input_video_path", | |
type=str, | |
help="Path to the input video file (first frame used)", | |
) | |
parser.add_argument( | |
"--input_image_path", type=str, help="Path to the input image file" | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
default=None, | |
help="Path to save output video, if None will save in working directory.", | |
) | |
parser.add_argument("--seed", type=int, default="171198") | |
# Pipeline parameters | |
parser.add_argument( | |
"--num_inference_steps", type=int, default=40, help="Number of inference steps" | |
) | |
parser.add_argument( | |
"--num_images_per_prompt", | |
type=int, | |
default=1, | |
help="Number of images per prompt", | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=float, | |
default=3, | |
help="Guidance scale for the pipeline", | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=None, | |
help="Height of the output video frames. Optional if an input image provided.", | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=None, | |
help="Width of the output video frames. If None will infer from input image.", | |
) | |
parser.add_argument( | |
"--num_frames", | |
type=int, | |
default=121, | |
help="Number of frames to generate in the output video", | |
) | |
parser.add_argument( | |
"--frame_rate", type=int, default=25, help="Frame rate for the output video" | |
) | |
parser.add_argument( | |
"--bfloat16", | |
action="store_true", | |
help="Denoise in bfloat16", | |
) | |
# Prompts | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
help="Text prompt to guide generation", | |
) | |
parser.add_argument( | |
"--negative_prompt", | |
type=str, | |
default="worst quality, inconsistent motion, blurry, jittery, distorted", | |
help="Negative prompt for undesired features", | |
) | |
parser.add_argument( | |
"--custom_resolution", | |
action="store_true", | |
default=False, | |
help="Enable custom resolution (not in recommneded resolutions) if specified (default: False)", | |
) | |
args = parser.parse_args() | |
if args.input_image_path is None and args.input_video_path is None: | |
assert ( | |
args.height is not None and args.width is not None | |
), "Must enter height and width for text to image generation." | |
# Load media (video or image) | |
if args.input_video_path: | |
media_items = load_video_to_tensor_with_resize( | |
args.input_video_path, args.height, args.width | |
).unsqueeze(0) | |
elif args.input_image_path: | |
media_items = load_image_to_tensor_with_resize( | |
args.input_image_path, args.height, args.width | |
) | |
else: | |
media_items = None | |
height = args.height if args.height else media_items.shape[-2] | |
width = args.width if args.width else media_items.shape[-1] | |
assert height % 32 == 0, f"Height ({height}) should be divisible by 32." | |
assert width % 32 == 0, f"Width ({width}) should be divisible by 32." | |
assert ( | |
height, | |
width, | |
args.num_frames, | |
) in RECOMMENDED_RESOLUTIONS or args.custom_resolution, f"The selected resolution + num frames combination is not supported, results would be suboptimal. Supported (h,w,f) are: {RECOMMENDED_RESOLUTIONS}. Use --custom_resolution to enable working with this resolution." | |
# Paths for the separate mode directories | |
ckpt_dir = Path(args.ckpt_dir) | |
unet_dir = ckpt_dir / "unet" | |
vae_dir = ckpt_dir / "vae" | |
scheduler_dir = ckpt_dir / "scheduler" | |
# Load models | |
vae = load_vae(vae_dir) | |
unet = load_unet(unet_dir) | |
scheduler = load_scheduler(scheduler_dir) | |
patchifier = SymmetricPatchifier(patch_size=1) | |
text_encoder = T5EncoderModel.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" | |
) | |
if torch.cuda.is_available(): | |
text_encoder = text_encoder.to("cuda") | |
tokenizer = T5Tokenizer.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer" | |
) | |
if args.bfloat16 and unet.dtype != torch.bfloat16: | |
unet = unet.to(torch.bfloat16) | |
# Use submodels for the pipeline | |
submodel_dict = { | |
"transformer": unet, | |
"patchifier": patchifier, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"scheduler": scheduler, | |
"vae": vae, | |
} | |
pipeline = XoraVideoPipeline(**submodel_dict) | |
if torch.cuda.is_available(): | |
pipeline = pipeline.to("cuda") | |
# Prepare input for the pipeline | |
sample = { | |
"prompt": args.prompt, | |
"prompt_attention_mask": None, | |
"negative_prompt": args.negative_prompt, | |
"negative_prompt_attention_mask": None, | |
"media_items": media_items, | |
} | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(args.seed) | |
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else 'cpu').manual_seed(args.seed) | |
images = pipeline( | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.num_images_per_prompt, | |
guidance_scale=args.guidance_scale, | |
generator=generator, | |
output_type="pt", | |
callback_on_step_end=None, | |
height=height, | |
width=width, | |
num_frames=args.num_frames, | |
frame_rate=args.frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=( | |
ConditioningMethod.FIRST_FRAME | |
if media_items is not None | |
else ConditioningMethod.UNCONDITIONAL | |
), | |
mixed_precision=not args.bfloat16, | |
).images | |
# Save output video | |
def get_unique_filename(base, ext, dir=".", index_range=1000): | |
for i in range(index_range): | |
filename = os.path.join(dir, f"{base}_{i}{ext}") | |
if not os.path.exists(filename): | |
return filename | |
raise FileExistsError( | |
f"Could not find a unique filename after {index_range} attempts." | |
) | |
for i in range(images.shape[0]): | |
# Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C | |
video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy() | |
# Unnormalizing images to [0, 255] range | |
video_np = (video_np * 255).astype(np.uint8) | |
fps = args.frame_rate | |
height, width = video_np.shape[1:3] | |
if video_np.shape[0] == 1: | |
output_filename = ( | |
args.output_path | |
if args.output_path is not None | |
else get_unique_filename(f"image_output_{i}", ".png", ".") | |
) | |
cv2.imwrite( | |
output_filename, video_np[0][..., ::-1] | |
) # Save single frame as image | |
else: | |
output_filename = ( | |
args.output_path | |
if args.output_path is not None | |
else get_unique_filename(f"video_output_{i}", ".mp4", ".") | |
) | |
out = cv2.VideoWriter( | |
output_filename, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height) | |
) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
if __name__ == "__main__": | |
main() | |