Spaces:
Running
Running
Ckpt conversion: script + usage examples updated.
Browse files
scripts/to_safetensors.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Any, Dict
|
4 |
+
import safetensors.torch
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
|
10 |
+
def load_text_encoder(index_path: Path) -> Dict:
|
11 |
+
with open(index_path, 'r') as f:
|
12 |
+
index: Dict = json.load(f)
|
13 |
+
|
14 |
+
loaded_tensors = {}
|
15 |
+
for part_file in set(index.get("weight_map", {}).values()):
|
16 |
+
tensors = safetensors.torch.load_file(index_path.parent / part_file, device='cpu')
|
17 |
+
for tensor_name in tensors:
|
18 |
+
loaded_tensors[tensor_name] = tensors[tensor_name]
|
19 |
+
|
20 |
+
return loaded_tensors
|
21 |
+
|
22 |
+
|
23 |
+
def convert_unet(unet: Dict, add_prefix=True) -> Dict:
|
24 |
+
if add_prefix:
|
25 |
+
return {"model.diffusion_model." + key: value for key, value in unet.items()}
|
26 |
+
return unet
|
27 |
+
|
28 |
+
|
29 |
+
def convert_vae(vae_path: Path, add_prefix=True) -> Dict:
|
30 |
+
state_dict = torch.load(vae_path / "autoencoder.pth", weights_only=True)
|
31 |
+
stats_path = vae_path / "per_channel_statistics.json"
|
32 |
+
if stats_path.exists():
|
33 |
+
with open(stats_path, 'r') as f:
|
34 |
+
data = json.load(f)
|
35 |
+
transposed_data = list(zip(*data["data"]))
|
36 |
+
data_dict = {
|
37 |
+
f"{'vae.' if add_prefix else ''}per_channel_statistics.{col}": torch.tensor(vals)
|
38 |
+
for col, vals in zip(data["columns"], transposed_data)
|
39 |
+
}
|
40 |
+
else:
|
41 |
+
data_dict = {}
|
42 |
+
|
43 |
+
result = {("vae." if add_prefix else "") + key: value for key, value in state_dict.items()}
|
44 |
+
result.update(data_dict)
|
45 |
+
return result
|
46 |
+
|
47 |
+
|
48 |
+
def convert_encoder(encoder: Dict) -> Dict:
|
49 |
+
return {"text_encoders.t5xxl.transformer." + key: value for key, value in encoder.items()}
|
50 |
+
|
51 |
+
|
52 |
+
def save_config(config_src: str, config_dst: str):
|
53 |
+
shutil.copy(config_src, config_dst)
|
54 |
+
|
55 |
+
|
56 |
+
def load_vae_config(vae_path: Path) -> str:
|
57 |
+
config_path = vae_path / "config.json"
|
58 |
+
if not config_path.exists():
|
59 |
+
raise FileNotFoundError(f"VAE config file {config_path} not found.")
|
60 |
+
return str(config_path)
|
61 |
+
|
62 |
+
|
63 |
+
def main(unet_path: str, vae_path: str, t5_path: str, out_path: str, mode: str,
|
64 |
+
unet_config_path: str = None, scheduler_config_path: str = None) -> None:
|
65 |
+
unet = convert_unet(torch.load(unet_path, weights_only=True), add_prefix=(mode == 'single'))
|
66 |
+
|
67 |
+
# Load VAE from directory and config
|
68 |
+
vae = convert_vae(Path(vae_path), add_prefix=(mode == 'single'))
|
69 |
+
vae_config_path = load_vae_config(Path(vae_path))
|
70 |
+
|
71 |
+
if mode == 'single':
|
72 |
+
result = {**unet, **vae}
|
73 |
+
safetensors.torch.save_file(result, out_path)
|
74 |
+
elif mode == 'separate':
|
75 |
+
# Create directories for unet, vae, and scheduler
|
76 |
+
unet_dir = Path(out_path) / 'unet'
|
77 |
+
vae_dir = Path(out_path) / 'vae'
|
78 |
+
scheduler_dir = Path(out_path) / 'scheduler'
|
79 |
+
|
80 |
+
unet_dir.mkdir(parents=True, exist_ok=True)
|
81 |
+
vae_dir.mkdir(parents=True, exist_ok=True)
|
82 |
+
scheduler_dir.mkdir(parents=True, exist_ok=True)
|
83 |
+
|
84 |
+
# Save unet and vae safetensors with the name diffusion_pytorch_model.safetensors
|
85 |
+
safetensors.torch.save_file(unet, unet_dir / 'diffusion_pytorch_model.safetensors')
|
86 |
+
safetensors.torch.save_file(vae, vae_dir / 'diffusion_pytorch_model.safetensors')
|
87 |
+
|
88 |
+
# Save config files for unet, vae, and scheduler
|
89 |
+
if unet_config_path:
|
90 |
+
save_config(unet_config_path, unet_dir / 'config.json')
|
91 |
+
if vae_config_path:
|
92 |
+
save_config(vae_config_path, vae_dir / 'config.json')
|
93 |
+
if scheduler_config_path:
|
94 |
+
save_config(scheduler_config_path, scheduler_dir / 'scheduler_config.json')
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
parser = argparse.ArgumentParser()
|
99 |
+
parser.add_argument('--unet_path', '-u', type=str, default='unet/ema-002.pt')
|
100 |
+
parser.add_argument('--vae_path', '-v', type=str, default='vae/')
|
101 |
+
parser.add_argument('--t5_path', '-t', type=str, default='t5/PixArt-XL-2-1024-MS/')
|
102 |
+
parser.add_argument('--out_path', '-o', type=str, default='xora.safetensors')
|
103 |
+
parser.add_argument('--mode', '-m', type=str, choices=['single', 'separate'], default='single',
|
104 |
+
help="Choose 'single' for the original behavior, 'separate' to save unet and vae separately.")
|
105 |
+
parser.add_argument('--unet_config_path', type=str, help="Path to the UNet config file (for separate mode)")
|
106 |
+
parser.add_argument('--scheduler_config_path', type=str,
|
107 |
+
help="Path to the Scheduler config file (for separate mode)")
|
108 |
+
|
109 |
+
args = parser.parse_args()
|
110 |
+
main(**args.__dict__)
|
xora/examples/image_to_video.py
CHANGED
@@ -5,32 +5,46 @@ from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
-
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
).cuda()
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
transformer = Transformer3DModel.from_config(transformer_config)
|
23 |
-
|
24 |
-
|
25 |
-
transformer.load_state_dict(transformer_ckpt_state_dict, True)
|
26 |
transformer = transformer.cuda()
|
27 |
unet = transformer
|
28 |
-
|
|
|
|
|
29 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
30 |
scheduler = RectifiedFlowScheduler.from_config(scheduler_config)
|
|
|
|
|
31 |
patchifier = SymmetricPatchifier(patch_size=1)
|
32 |
-
# text_encoder = T5EncoderModel.from_pretrained("t5-v1_1-xxl")
|
33 |
|
|
|
34 |
submodel_dict = {
|
35 |
"unet": unet,
|
36 |
"transformer": transformer,
|
@@ -38,36 +52,33 @@ submodel_dict = {
|
|
38 |
"text_encoder": None,
|
39 |
"scheduler": scheduler,
|
40 |
"vae": vae,
|
41 |
-
|
42 |
}
|
43 |
|
|
|
44 |
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
45 |
safety_checker=None,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
num_inference_steps=20
|
52 |
-
num_images_per_prompt=2
|
53 |
-
guidance_scale=3
|
54 |
-
height=512
|
55 |
-
width=768
|
56 |
-
num_frames=57
|
57 |
-
frame_rate=25
|
58 |
-
# sample = {
|
59 |
-
# "prompt": "A cat", # (B, L, E)
|
60 |
-
# 'prompt_attention_mask': None, # (B , L)
|
61 |
-
# 'negative_prompt': "Ugly deformed",
|
62 |
-
# 'negative_prompt_attention_mask': None # (B , L)
|
63 |
-
# }
|
64 |
|
|
|
65 |
sample = torch.load("/opt/sample.pt")
|
66 |
-
for
|
67 |
if item is not None:
|
68 |
-
|
|
|
69 |
media_items = torch.load("/opt/sample_media.pt")
|
70 |
|
|
|
71 |
images = pipeline(
|
72 |
num_inference_steps=num_inference_steps,
|
73 |
num_images_per_prompt=num_images_per_prompt,
|
@@ -84,4 +95,4 @@ images = pipeline(
|
|
84 |
vae_per_channel_normalize=True,
|
85 |
).images
|
86 |
|
87 |
-
print()
|
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
+
import safetensors.torch
|
9 |
+
import json
|
10 |
|
11 |
+
# Paths for the separate mode directories
|
12 |
+
separate_dir = Path("/opt/models/xora-img2video")
|
13 |
+
unet_dir = separate_dir / 'unet'
|
14 |
+
vae_dir = separate_dir / 'vae'
|
15 |
+
scheduler_dir = separate_dir / 'scheduler'
|
16 |
|
17 |
+
# Load VAE from separate mode
|
18 |
+
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
|
19 |
+
vae_config_path = vae_dir / "config.json"
|
20 |
+
with open(vae_config_path, 'r') as f:
|
21 |
+
vae_config = json.load(f)
|
22 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
23 |
+
vae = CausalVideoAutoencoder.from_pretrained_conf(
|
24 |
+
config=vae_config,
|
25 |
+
state_dict=vae_state_dict,
|
26 |
+
torch_dtype=torch.bfloat16
|
27 |
).cuda()
|
28 |
+
|
29 |
+
# Load UNet (Transformer) from separate mode
|
30 |
+
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
|
31 |
+
unet_config_path = unet_dir / "config.json"
|
32 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
33 |
transformer = Transformer3DModel.from_config(transformer_config)
|
34 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
35 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
|
|
36 |
transformer = transformer.cuda()
|
37 |
unet = transformer
|
38 |
+
|
39 |
+
# Load Scheduler from separate mode
|
40 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
41 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
42 |
scheduler = RectifiedFlowScheduler.from_config(scheduler_config)
|
43 |
+
|
44 |
+
# Patchifier (remains the same)
|
45 |
patchifier = SymmetricPatchifier(patch_size=1)
|
|
|
46 |
|
47 |
+
# Use submodels for the pipeline
|
48 |
submodel_dict = {
|
49 |
"unet": unet,
|
50 |
"transformer": transformer,
|
|
|
52 |
"text_encoder": None,
|
53 |
"scheduler": scheduler,
|
54 |
"vae": vae,
|
|
|
55 |
}
|
56 |
|
57 |
+
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
58 |
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
59 |
safety_checker=None,
|
60 |
+
revision=None,
|
61 |
+
torch_dtype=torch.float32, # dtype adjusted
|
62 |
+
**submodel_dict,
|
63 |
+
).to("cuda")
|
64 |
|
65 |
+
num_inference_steps = 20
|
66 |
+
num_images_per_prompt = 2
|
67 |
+
guidance_scale = 3
|
68 |
+
height = 512
|
69 |
+
width = 768
|
70 |
+
num_frames = 57
|
71 |
+
frame_rate = 25
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Assuming sample is a dict loaded from a .pt file
|
74 |
sample = torch.load("/opt/sample.pt")
|
75 |
+
for key, item in sample.items():
|
76 |
if item is not None:
|
77 |
+
sample[key] = item.cuda()
|
78 |
+
|
79 |
media_items = torch.load("/opt/sample_media.pt")
|
80 |
|
81 |
+
# Generate images (video frames)
|
82 |
images = pipeline(
|
83 |
num_inference_steps=num_inference_steps,
|
84 |
num_images_per_prompt=num_images_per_prompt,
|
|
|
95 |
vae_per_channel_normalize=True,
|
96 |
).images
|
97 |
|
98 |
+
print("Generated video frames.")
|
xora/examples/text_to_video.py
CHANGED
@@ -6,69 +6,78 @@ from xora.schedulers.rf import RectifiedFlowScheduler
|
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
from transformers import T5EncoderModel
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
).cuda()
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
transformer = Transformer3DModel.from_config(transformer_config)
|
23 |
-
|
24 |
-
|
25 |
-
transformer.load_state_dict(transformer_ckpt_state_dict, True)
|
26 |
transformer = transformer.cuda()
|
27 |
unet = transformer
|
28 |
-
|
|
|
|
|
29 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
30 |
scheduler = RectifiedFlowScheduler.from_config(scheduler_config)
|
|
|
|
|
31 |
patchifier = SymmetricPatchifier(patch_size=1)
|
32 |
-
# text_encoder = T5EncoderModel.from_pretrained("t5-v1_1-xxl")
|
33 |
|
|
|
34 |
submodel_dict = {
|
35 |
"unet": unet,
|
36 |
"transformer": transformer,
|
37 |
"patchifier": patchifier,
|
38 |
-
"text_encoder": None,
|
39 |
"scheduler": scheduler,
|
40 |
"vae": vae,
|
41 |
-
|
42 |
}
|
43 |
-
|
44 |
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
45 |
safety_checker=None,
|
46 |
revision=None,
|
47 |
-
torch_dtype=
|
48 |
**submodel_dict,
|
49 |
-
)
|
50 |
-
|
51 |
-
num_inference_steps=20
|
52 |
-
num_images_per_prompt=2
|
53 |
-
guidance_scale=3
|
54 |
-
height=512
|
55 |
-
width=768
|
56 |
-
num_frames=57
|
57 |
-
frame_rate=25
|
58 |
-
# sample = {
|
59 |
-
# "prompt": "A cat", # (B, L, E)
|
60 |
-
# 'prompt_attention_mask': None, # (B , L)
|
61 |
-
# 'negative_prompt': "Ugly deformed",
|
62 |
-
# 'negative_prompt_attention_mask': None # (B , L)
|
63 |
-
# }
|
64 |
-
|
65 |
-
sample = torch.load("/opt/sample.pt")
|
66 |
-
for _, item in sample.items():
|
67 |
-
if item is not None:
|
68 |
-
item = item.cuda()
|
69 |
-
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
72 |
images = pipeline(
|
73 |
num_inference_steps=num_inference_steps,
|
74 |
num_images_per_prompt=num_images_per_prompt,
|
@@ -85,4 +94,4 @@ images = pipeline(
|
|
85 |
vae_per_channel_normalize=True,
|
86 |
).images
|
87 |
|
88 |
-
print()
|
|
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
from transformers import T5EncoderModel
|
9 |
+
import safetensors.torch
|
10 |
+
import json
|
11 |
|
12 |
+
# Paths for the separate mode directories
|
13 |
+
separate_dir = Path("/opt/models/xora-txt2video")
|
14 |
+
unet_dir = separate_dir / 'unet'
|
15 |
+
vae_dir = separate_dir / 'vae'
|
16 |
+
scheduler_dir = separate_dir / 'scheduler'
|
17 |
|
18 |
+
# Load VAE from separate mode
|
19 |
+
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
|
20 |
+
vae_config_path = vae_dir / "config.json"
|
21 |
+
with open(vae_config_path, 'r') as f:
|
22 |
+
vae_config = json.load(f)
|
23 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
24 |
+
vae = CausalVideoAutoencoder.from_pretrained_conf(
|
25 |
+
config=vae_config,
|
26 |
+
state_dict=vae_state_dict,
|
27 |
+
torch_dtype=torch.bfloat16
|
28 |
).cuda()
|
29 |
+
|
30 |
+
# Load UNet (Transformer) from separate mode
|
31 |
+
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
|
32 |
+
unet_config_path = unet_dir / "config.json"
|
33 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
34 |
transformer = Transformer3DModel.from_config(transformer_config)
|
35 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
36 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
|
|
37 |
transformer = transformer.cuda()
|
38 |
unet = transformer
|
39 |
+
|
40 |
+
# Load Scheduler from separate mode
|
41 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
42 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
43 |
scheduler = RectifiedFlowScheduler.from_config(scheduler_config)
|
44 |
+
|
45 |
+
# Patchifier (remains the same)
|
46 |
patchifier = SymmetricPatchifier(patch_size=1)
|
|
|
47 |
|
48 |
+
# Use submodels for the pipeline
|
49 |
submodel_dict = {
|
50 |
"unet": unet,
|
51 |
"transformer": transformer,
|
52 |
"patchifier": patchifier,
|
|
|
53 |
"scheduler": scheduler,
|
54 |
"vae": vae,
|
|
|
55 |
}
|
56 |
+
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
57 |
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
58 |
safety_checker=None,
|
59 |
revision=None,
|
60 |
+
torch_dtype=torch.float32,
|
61 |
**submodel_dict,
|
62 |
+
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Sample input
|
65 |
+
num_inference_steps = 20
|
66 |
+
num_images_per_prompt = 2
|
67 |
+
guidance_scale = 3
|
68 |
+
height = 512
|
69 |
+
width = 768
|
70 |
+
num_frames = 57
|
71 |
+
frame_rate = 25
|
72 |
+
sample = {
|
73 |
+
"prompt": "A middle-aged man with glasses and a salt-and-pepper beard is driving a car and talking, gesturing with his right hand. "
|
74 |
+
"The man is wearing a dark blue zip-up jacket and a light blue collared shirt. He is sitting in the driver's seat of a car with a black interior. The car is moving on a road with trees and bushes on either side. The man has a serious expression on his face and is looking straight ahead.",
|
75 |
+
'prompt_attention_mask': None, # Adjust attention masks as needed
|
76 |
+
'negative_prompt': "Ugly deformed",
|
77 |
+
'negative_prompt_attention_mask': None
|
78 |
+
}
|
79 |
|
80 |
+
# Generate images (video frames)
|
81 |
images = pipeline(
|
82 |
num_inference_steps=num_inference_steps,
|
83 |
num_images_per_prompt=num_images_per_prompt,
|
|
|
94 |
vae_per_channel_normalize=True,
|
95 |
).images
|
96 |
|
97 |
+
print("Generated images (video frames).")
|
xora/models/autoencoders/causal_video_autoencoder.py
CHANGED
@@ -41,6 +41,35 @@ class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
41 |
|
42 |
return video_vae
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
@staticmethod
|
45 |
def from_config(config):
|
46 |
assert config["_class_name"] == "CausalVideoAutoencoder", "config must have _class_name=CausalVideoAutoencoder"
|
|
|
41 |
|
42 |
return video_vae
|
43 |
|
44 |
+
@classmethod
|
45 |
+
def from_pretrained_conf(cls, config, state_dict, torch_dtype=torch.float32):
|
46 |
+
video_vae = cls.from_config(config)
|
47 |
+
video_vae.to(torch_dtype)
|
48 |
+
|
49 |
+
per_channel_statistics_prefix = "per_channel_statistics."
|
50 |
+
ckpt_state_dict = {
|
51 |
+
key: value
|
52 |
+
for key, value in state_dict.items()
|
53 |
+
if not key.startswith(per_channel_statistics_prefix)
|
54 |
+
}
|
55 |
+
video_vae.load_state_dict(ckpt_state_dict)
|
56 |
+
|
57 |
+
data_dict = {
|
58 |
+
key.removeprefix(per_channel_statistics_prefix): value
|
59 |
+
for key, value in state_dict.items()
|
60 |
+
if key.startswith(per_channel_statistics_prefix)
|
61 |
+
}
|
62 |
+
if len(data_dict) > 0:
|
63 |
+
video_vae.register_buffer("std_of_means", data_dict["std-of-means"])
|
64 |
+
video_vae.register_buffer(
|
65 |
+
"mean_of_means",
|
66 |
+
data_dict.get(
|
67 |
+
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
68 |
+
),
|
69 |
+
)
|
70 |
+
|
71 |
+
return video_vae
|
72 |
+
|
73 |
@staticmethod
|
74 |
def from_config(config):
|
75 |
assert config["_class_name"] == "CausalVideoAutoencoder", "config must have _class_name=CausalVideoAutoencoder"
|