Spaces:
Runtime error
Runtime error
File size: 4,730 Bytes
6ef620e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import random
import gradio as gr
import numpy as np
import spaces
import torch
from inference_t2mv_sdxl import prepare_pipeline, run_pipeline
# Base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
# Device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hyperparameters
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max
pipe = prepare_pipeline(
base_model=base_model,
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=device,
dtype=dtype,
)
@spaces.GPU()
def infer(
prompt,
seed=42,
randomize_seed=False,
guidance_scale=7.0,
num_inference_steps=50,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
images = run_pipeline(
pipe,
num_views=NUM_VIEWS,
text=prompt,
height=HEIGHT,
width=WIDTH,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
negative_prompt=negative_prompt,
device=device,
)
return images, seed
examples = {
"stabilityai/stable-diffusion-xl-base-1.0": [
["An astronaut riding a horse", 42],
["A DSLR photo of a frog wearing a sweater", 42],
],
"cagliostrolab/animagine-xl-3.1": [
[
"1girl, izayoi sakuya, touhou, solo, maid headdress, maid, apron, short sleeves, dress, closed mouth, white apron, serious face, upper body, masterpiece, best quality, very aesthetic, absurdres",
0,
],
[
"1boy, male focus, ikari shinji, neon genesis evangelion, solo, serious face,(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, moist skin, intricate details",
0,
],
[
"1girl, pink hair, pink shirts, smile, shy, masterpiece, anime",
0,
],
],
}
css = """
#col-container {
margin: 0 auto;
max-width: 600px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""# MV-Adapter [Text-to-Multi-View]
Generate 768x768 multi-view images using {base_model} <br>
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)]
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Result",
show_label=False,
columns=[3],
rows=[2],
object_fit="contain",
height="auto",
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
with gr.Row():
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter your negative prompt",
value="watermark, ugly, deformed, noisy, blurry, low contrast",
)
gr.Examples(
examples=examples[base_model],
fn=infer,
inputs=[prompt, seed],
outputs=[result, seed],
cache_examples=True,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
negative_prompt,
],
outputs=[result, seed],
)
demo.launch()
|