File size: 5,100 Bytes
6ef620e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse

import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel

from mvadapter.pipelines.pipeline_mvadapter_t2mv_sdxl import MVAdapterT2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import (
    get_orthogonal_camera,
    get_plucker_embeds_from_cameras_ortho,
    make_image_grid,
)


def prepare_pipeline(
    base_model,
    vae_model,
    unet_model,
    lora_model,
    adapter_path,
    scheduler,
    num_views,
    device,
    dtype,
):
    # Load vae and unet if provided
    pipe_kwargs = {}
    if vae_model is not None:
        pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
    if unet_model is not None:
        pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)

    # Prepare pipeline
    pipe: MVAdapterT2MVSDXLPipeline
    pipe = MVAdapterT2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)

    # Load scheduler if provided
    scheduler_class = None
    if scheduler == "ddpm":
        scheduler_class = DDPMScheduler
    elif scheduler == "lcm":
        scheduler_class = LCMScheduler

    pipe.scheduler = ShiftSNRScheduler.from_scheduler(
        pipe.scheduler,
        shift_mode="interpolated",
        shift_scale=8.0,
        scheduler_class=scheduler_class,
    )
    pipe.init_custom_adapter(num_views=num_views)
    pipe.load_custom_adapter(
        adapter_path, weight_name="mvadapter_t2mv_sdxl.safetensors"
    )

    pipe.to(device=device, dtype=dtype)
    pipe.cond_encoder.to(device=device, dtype=dtype)

    # load lora if provided
    if lora_model is not None:
        model_, name_ = lora_model.rsplit("/", 1)
        pipe.load_lora_weights(model_, weight_name=name_)

    return pipe


def run_pipeline(
    pipe,
    num_views,
    text,
    height,
    width,
    num_inference_steps,
    guidance_scale,
    seed,
    negative_prompt,
    lora_scale=1.0,
    device="cuda",
):
    # Prepare cameras
    cameras = get_orthogonal_camera(
        elevation_deg=[0, 0, 0, 0, 0, 0],
        distance=[1.8] * num_views,
        left=-0.55,
        right=0.55,
        bottom=-0.55,
        top=0.55,
        azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
        device=device,
    )

    plucker_embeds = get_plucker_embeds_from_cameras_ortho(
        cameras.c2w, [1.1] * num_views, width
    )
    control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)

    pipe_kwargs = {}
    if seed != -1:
        pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)

    images = pipe(
        text,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_views,
        control_image=control_images,
        control_conditioning_scale=1.0,
        negative_prompt=negative_prompt,
        cross_attention_kwargs={"scale": lora_scale},
        **pipe_kwargs,
    ).images

    return images


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Models
    parser.add_argument(
        "--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
    )
    parser.add_argument(
        "--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
    )
    parser.add_argument("--unet_model", type=str, default=None)
    parser.add_argument("--scheduler", type=str, default=None)
    parser.add_argument("--lora_model", type=str, default=None)
    parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
    parser.add_argument("--num_views", type=int, default=6)
    # Device
    parser.add_argument("--device", type=str, default="cuda")
    # Inference
    parser.add_argument("--text", type=str, required=True)
    parser.add_argument("--num_inference_steps", type=int, default=50)
    parser.add_argument("--guidance_scale", type=float, default=7.0)
    parser.add_argument("--seed", type=int, default=-1)
    parser.add_argument(
        "--negative_prompt",
        type=str,
        default="watermark, ugly, deformed, noisy, blurry, low contrast",
    )
    parser.add_argument("--lora_scale", type=float, default=1.0)
    parser.add_argument("--output", type=str, default="output.png")
    args = parser.parse_args()

    pipe = prepare_pipeline(
        base_model=args.base_model,
        vae_model=args.vae_model,
        unet_model=args.unet_model,
        lora_model=args.lora_model,
        adapter_path=args.adapter_path,
        scheduler=args.scheduler,
        num_views=args.num_views,
        device=args.device,
        dtype=torch.float16,
    )
    images = run_pipeline(
        pipe,
        num_views=args.num_views,
        text=args.text,
        height=768,
        width=768,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        seed=args.seed,
        negative_prompt=args.negative_prompt,
        lora_scale=args.lora_scale,
        device=args.device,
    )
    make_image_grid(images, rows=1).save(args.output)