Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_from_disk, load_dataset
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
ds_with_embeddings = load_dataset("svjack/bloom-dialogue-generate-ds-zh", split="train")
|
7 |
+
ds_with_embeddings.add_faiss_index(column='embeddings')
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
encoder = SentenceTransformer("sentence-transformers/LaBSE")
|
10 |
+
|
11 |
+
def retrieve_search_df(question = "今天天气不错。", top_k = 10):
|
12 |
+
question_embedding = encoder.encode(question)
|
13 |
+
scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('embeddings', question_embedding, k=top_k)
|
14 |
+
sdf = pd.DataFrame(retrieved_examples)
|
15 |
+
sdf["scores"] = scores
|
16 |
+
return sdf[["question", "dialogue_text", "dialogue", "repo", "scores"]]
|
17 |
+
|
18 |
+
example_sample = [
|
19 |
+
["今天天气不错。", 3],
|
20 |
+
["你想吃点什么?", 5],
|
21 |
+
]
|
22 |
+
|
23 |
+
def demo_func(prefix, max_length):
|
24 |
+
max_length = max(int(max_length), 3)
|
25 |
+
l = retrieve_search_df(prefix, max_length)[["dialogue", "repo"]].values.tolist()
|
26 |
+
assert type(l) == type([])
|
27 |
+
return {
|
28 |
+
"Dialogue Context": l
|
29 |
+
}
|
30 |
+
|
31 |
+
demo = gr.Interface(
|
32 |
+
fn=demo_func,
|
33 |
+
inputs=[gr.Text(label = "Prefix"),
|
34 |
+
gr.Number(label = "Top K", value = 10)
|
35 |
+
],
|
36 |
+
outputs="json",
|
37 |
+
title=f"Bloom and GPT Chinese Daliy Dialogue Generator 🌸🐰 sample search demonstration",
|
38 |
+
description = 'This _example_ was **drive** from <br/><b><h4>[https://github.com/svjack/Daliy-Dialogue](https://github.com/svjack/Daliy-Dialogue)</h4></b>\n',
|
39 |
+
examples=example_sample if example_sample else None,
|
40 |
+
cache_examples = False
|
41 |
+
)
|
42 |
+
|
43 |
+
demo.launch(server_name=None, server_port=None)
|