Spaces:
Running
Running
File size: 7,956 Bytes
1a0cf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import datetime
import json
import logging
import os
import re
from abc import ABC, abstractmethod
import dirtyjson
import hjson
import numpy as np
import openai
from fuzzywuzzy import process
from sklearn.metrics.pairwise import cosine_similarity
api_configs = {
"SambaNova": {
"api_key": os.environ.get("SAMBANOVA_API_KEY"),
"url_base": "https://api.sambanova.ai/v1"
},
"Together": {
"api_key": os.environ.get("TOGETHER_API_KEY"),
"url_base": "https://api.together.xyz/v1"
}
# You can add more API configurations here for other providers
}
class Agent(ABC):
def __init__(self, prompt_template, llm_client):
self.prompt_template = prompt_template
self.llm_client = llm_client
@abstractmethod
def generate_response(self, prompt):
pass
def setup_logging():
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
log_filename = f"logs/swiftsage_log_{timestamp}.txt"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename=log_filename,
filemode='w'
)
# Also print to console
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
return logging.getLogger('SwiftSage')
def extract_and_parse_markup(text):
keys = ["reasoning_steps", "final_answer", "feedback", "score", "critical_feedback", "revised_plan", "solved", "plan", "code"]
result = {}
if "<final_answer>" in text and "</final_answer>" not in text:
text = text + "</final_answer>"
for key in keys:
# Create a pattern for each key
pattern = f'<{key}>(.*?)</{key}>'
# Search for the pattern in the text
match = re.search(pattern, text, re.DOTALL)
if match:
# Extract the content, strip whitespace, and add to the result
content = match.group(1).strip()
result[key] = content
if "code" in result.keys():
result["code"] = result["code"].replace("```python", "").replace("```", "").strip()
return result
class PromptTemplate:
def __init__(self, template_dir):
self.template_dir = template_dir
self.templates = {}
self.load_templates()
def load_templates(self):
for filename in ['swift_template.md', 'sage_template.md', 'reward_template.md']:
with open(os.path.join(self.template_dir, filename), 'r') as f:
key = filename.split('_')[0]
self.templates[key] = f.read()
def format(self, key, **kwargs):
template = self.templates.get(key, "")
for k, v in kwargs.items():
template = template.replace("<" + k + ">", str(v))
return template
class LLMClient:
def __init__(self, model_id, api_config, temperature=0.3, top_p=1.0, max_tokens=3000, logger=None):
self.client = openai.OpenAI(
api_key=api_config['api_key'],
base_url=api_config['url_base']
)
self.model_id = model_id
self.temperature = temperature
self.top_p = top_p
self.max_tokens = max_tokens
self.logger = logger
def generate_response(self, messages):
self.logger.info(f"Sending request to {self.model_id}")
self.logger.info(f"Messages: {messages}")
response = self.client.chat.completions.create(
model=self.model_id,
messages=messages,
temperature=self.temperature,
top_p=self.top_p,
max_tokens=self.max_tokens
)
content = response.choices[0].message.content
self.logger.info(f"Response from {self.model_id}:\n{content}")
return content
if __name__ == "__main__":
test_text = "test"
print(extract_and_parse_markup(test_text))
"""
def extract_and_parse_json(text):
keys_and_types = [
("reasoning_steps", list),
("final_answer", str),
("feedback", str),
("score", str),
("score", int),
("feedback", str),
("solved", str),
("critical_feedback", str),
("revised_plan", list),
]
# Try to parse the JSON first
try:
# find the first and last curly braces and parse the json
first_brace = text.find("{")
last_brace = text.rfind("}")
if last_brace == -1:
text = text + "\"}"
if first_brace != -1 and last_brace != -1 and first_brace < last_brace:
data = json.loads(text[first_brace:last_brace+1])
return data
except Exception as e:
data = {}
try:
data = dirtyjson.loads(text)
except Exception as e:
pass
# If JSON parsing fails, use regex to extract key-value pairs
for key, _ in keys_and_types:
# pattern = rf'"{key}"\s*:\s*([\[{{].*?[\]}}]|".*?")'
pattern = rf'"{key}"\s*:\s*([\[{{].*?[\]}}]|".*?"|[-+]?\d+)'
match = re.search(pattern, text, re.DOTALL)
if match:
try:
value = json.loads(match.group(1))
except Exception as e:
value = match.group(1).strip('"')
data[key] = value
result = {}
for key, expected_type in keys_and_types:
if key in result.keys() and result[key] is not None:
continue
# Use fuzzy matching to find the closest key
try:
closest_key, score = process.extractOne(key, data.keys())
except Exception as e:
continue
if score > 80: # You can adjust this threshold
value = data[closest_key]
# Type checking and conversion
if expected_type == list and isinstance(value, str):
value = [item.strip() for item in value.strip('[]').split(',')]
elif expected_type == str and isinstance(value, list):
value = ', '.join(value)
elif expected_type == int and value is not None:
try:
value = int(value)
except ValueError:
value = None
result[key] = value
else:
result[key] = None
for key in list(result.keys()):
if result[key] is None:
del result[key]
return result
def extract_and_parse_json_v1(text):
def find_json_objects(s):
# Find all substrings that look like JSON objects
json_like_strs = re.findall(r'\{(?:[^{}]|\{[^{}]*\})*\}', s)
return json_like_strs
def try_parse_json(s):
try:
return json.loads(s)
except json.JSONDecodeError:
try:
s = s.replace("\n", "")
return hjson.loads(s)
except json.JSONDecodeError:
return None
return None
# First, try to find JSON within code blocks
code_block_pattern = r'```(?:json)?\s*([\s\S]*?)\s*```'
code_blocks = re.findall(code_block_pattern, text, re.IGNORECASE)
all_json_candidates = []
# Add JSON candidates from code blocks
for block in code_blocks:
all_json_candidates.extend(find_json_objects(block))
# Add JSON candidates from the entire text
all_json_candidates.extend(find_json_objects(text))
# Sort candidates by length, descending
all_json_candidates.sort(key=len, reverse=True)
# Try to parse each candidate
for candidate in all_json_candidates:
parsed_json = try_parse_json(candidate)
if parsed_json is not None:
return parsed_json
raise ValueError("No valid JSON object found in the text")
""" |