Spaces:
Running
Running
File size: 12,607 Bytes
b20af9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
#!/usr/bin/env python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from itertools import product, permutations, combinations_with_replacement, chain
class Unary(nn.Module):
def __init__(self, embed_size):
"""
Captures local entity information
:param embed_size: the embedding dimension
"""
super(Unary, self).__init__()
self.embed = nn.Conv1d(embed_size, embed_size, 1)
self.feature_reduce = nn.Conv1d(embed_size, 1, 1)
def forward(self, X):
X = X.transpose(1, 2)
X_embed = self.embed(X)
X_nl_embed = F.dropout(F.relu(X_embed), training=self.training)
X_poten = self.feature_reduce(X_nl_embed)
return X_poten.squeeze(1)
class Pairwise(nn.Module):
def __init__(self, embed_x_size, x_spatial_dim=None, embed_y_size=None, y_spatial_dim=None):
"""
Captures interaction between utilities or entities of the same utility
:param embed_x_size: the embedding dimension of the first utility
:param x_spatial_dim: the spatial dimension of the first utility for batch norm and weighted marginalization
:param embed_y_size: the embedding dimension of the second utility (none for self-interactions)
:param y_spatial_dim: the spatial dimension of the second utility for batch norm and weighted marginalization
"""
super(Pairwise, self).__init__()
embed_y_size = embed_y_size if y_spatial_dim is not None else embed_x_size
self.y_spatial_dim = y_spatial_dim if y_spatial_dim is not None else x_spatial_dim
self.embed_size = max(embed_x_size, embed_y_size)
self.x_spatial_dim = x_spatial_dim
self.embed_X = nn.Conv1d(embed_x_size, self.embed_size, 1)
self.embed_Y = nn.Conv1d(embed_y_size, self.embed_size, 1)
if x_spatial_dim is not None:
self.normalize_S = nn.BatchNorm1d(self.x_spatial_dim * self.y_spatial_dim)
self.margin_X = nn.Conv1d(self.y_spatial_dim, 1, 1)
self.margin_Y = nn.Conv1d(self.x_spatial_dim, 1, 1)
def forward(self, X, Y=None):
X_t = X.transpose(1, 2)
Y_t = Y.transpose(1, 2) if Y is not None else X_t
X_embed = self.embed_X(X_t)
Y_embed = self.embed_Y(Y_t)
X_norm = F.normalize(X_embed)
Y_norm = F.normalize(Y_embed)
S = X_norm.transpose(1, 2).bmm(Y_norm)
if self.x_spatial_dim is not None:
S = self.normalize_S(S.view(-1, self.x_spatial_dim * self.y_spatial_dim)) \
.view(-1, self.x_spatial_dim, self.y_spatial_dim)
X_poten = self.margin_X(S.transpose(1, 2)).transpose(1, 2).squeeze(2)
Y_poten = self.margin_Y(S).transpose(1, 2).squeeze(2)
else:
X_poten = S.mean(dim=2, keepdim=False)
Y_poten = S.mean(dim=1, keepdim=False)
if Y is None:
return X_poten
else:
return X_poten, Y_poten
class Atten(nn.Module):
def __init__(self, util_e, sharing_factor_weights=[], prior_flag=False,
sizes=[], size_force=False, pairwise_flag=True,
unary_flag=True, self_flag=True):
"""
The class performs an attention on a given list of utilities representation.
:param util_e: the embedding dimensions
:param sharing_factor_weights: To share weights, provide a dict of tuples:
{idx: (num_utils, connected utils)
Note, for efficiency, the shared utils (i.e., history, are connected to ans
and question only.
TODO: connections between shared utils
:param prior_flag: is prior factor provided
:param sizes: the spatial simension (used for batch-norm and weighted marginalization)
:param size_force: force spatial size with adaptive avg pooling.
:param pairwise_flag: use pairwise interaction between utilities
:param unary_flag: use local information
:param self_flag: use self interactions between utilitie's entities
"""
super(Atten, self).__init__()
self.util_e = util_e
self.prior_flag = prior_flag
self.n_utils = len(util_e)
self.spatial_pool = nn.ModuleDict()
self.un_models = nn.ModuleList()
self.self_flag = self_flag
self.pairwise_flag = pairwise_flag
self.unary_flag = unary_flag
self.size_force = size_force
if len(sizes) == 0:
sizes = [None for _ in util_e]
self.sharing_factor_weights = sharing_factor_weights
#force the provided size
for idx, e_dim in enumerate(util_e):
self.un_models.append(Unary(e_dim))
if self.size_force:
self.spatial_pool[str(idx)] = nn.AdaptiveAvgPool1d(sizes[idx])
#Pairwise
self.pp_models = nn.ModuleDict()
for ((idx1, e_dim_1), (idx2, e_dim_2)) \
in combinations_with_replacement(enumerate(util_e), 2):
# self
if self.self_flag and idx1 == idx2:
self.pp_models[str(idx1)] = Pairwise(e_dim_1, sizes[idx1])
else:
if pairwise_flag:
if idx1 in self.sharing_factor_weights:
# not connected
if idx2 not in self.sharing_factor_weights[idx1][1]:
continue
if idx2 in self.sharing_factor_weights:
# not connected
if idx1 not in self.sharing_factor_weights[idx2][1]:
continue
self.pp_models[str((idx1, idx2))] = Pairwise(e_dim_1, sizes[idx1], e_dim_2, sizes[idx2])
# Handle reduce potentials (with scalars)
self.reduce_potentials = nn.ModuleList()
self.num_of_potentials = dict()
self.default_num_of_potentials = 0
if self.self_flag:
self.default_num_of_potentials += 1
if self.unary_flag:
self.default_num_of_potentials += 1
if self.prior_flag:
self.default_num_of_potentials += 1
for idx in range(self.n_utils):
self.num_of_potentials[idx] = self.default_num_of_potentials
'''
All other utilities
'''
if pairwise_flag:
for idx, (num_utils, connected_utils) in sharing_factor_weights:
for c_u in connected_utils:
self.num_of_potentials[c_u] += num_utils
self.num_of_potentials[idx] += 1
for k in self.num_of_potentials:
if k not in self.sharing_factor_weights:
self.num_of_potentials[k] += (self.n_utils - 1) \
- len(sharing_factor_weights)
for idx in range(self.n_utils):
self.reduce_potentials.append(nn.Conv1d(self.num_of_potentials[idx],
1, 1, bias=False))
def forward(self, utils, priors=None):
assert self.n_utils == len(utils)
assert (priors is None and not self.prior_flag) \
or (priors is not None
and self.prior_flag
and len(priors) == self.n_utils)
b_size = utils[0].size(0)
util_factors = dict()
attention = list()
#Force size, constant size is used for pairwise batch normalization
if self.size_force:
for i, (num_utils, _) in self.sharing_factor_weights.items():
if str(i) not in self.spatial_pool.keys():
continue
else:
high_util = utils[i]
high_util = high_util.view(num_utils * b_size, high_util.size(2), high_util.size(3))
high_util = high_util.transpose(1, 2)
utils[i] = self.spatial_pool[str(i)](high_util).transpose(1, 2)
for i in range(self.n_utils):
if i in self.sharing_factor_weights \
or str(i) not in self.spatial_pool.keys():
continue
utils[i] = utils[i].transpose(1, 2)
utils[i] = self.spatial_pool[str(i)](utils[i]).transpose(1, 2)
if self.prior_flag and priors[i] is not None:
priors[i] = self.spatial_pool[str(i)](priors[i].unsqueeze(1)).squeeze(1)
# handle Shared weights
for i, (num_utils, connected_list) in self.sharing_factor_weights:
if self.unary_flag:
util_factors.setdefault(i, []).append(self.un_models[i](utils[i]))
if self.self_flag:
util_factors.setdefault(i, []).append(self.pp_models[str(i)](utils[i]))
if self.pairwise_flag:
for j in connected_list:
other_util = utils[j]
expanded_util = other_util.unsqueeze(1).expand(b_size,
num_utils,
other_util.size(1),
other_util.size(2)).contiguous().view(
b_size * num_utils,
other_util.size(1),
other_util.size(2))
if i < j:
factor_ij, factor_ji = self.pp_models[str((i, j))](utils[i], expanded_util)
else:
factor_ji, factor_ij = self.pp_models[str((j, i))](expanded_util, utils[i])
util_factors[i].append(factor_ij)
util_factors.setdefault(j, []).append(factor_ji.view(b_size, num_utils, factor_ji.size(1)))
# handle local factors
for i in range(self.n_utils):
if i in self.sharing_factor_weights:
continue
if self.unary_flag:
util_factors.setdefault(i, []).append(self.un_models[i](utils[i]))
if self.self_flag:
util_factors.setdefault(i, []).append(self.pp_models[str(i)](utils[i]))
# joint
if self.pairwise_flag:
for (i, j) in combinations_with_replacement(range(self.n_utils), 2):
if i in self.sharing_factor_weights \
or j in self.sharing_factor_weights:
continue
if i == j:
continue
else:
factor_ij, factor_ji = self.pp_models[str((i, j))](utils[i], utils[j])
util_factors.setdefault(i, []).append(factor_ij)
util_factors.setdefault(j, []).append(factor_ji)
# perform attention
for i in range(self.n_utils):
if self.prior_flag:
prior = priors[i] \
if priors[i] is not None \
else torch.zeros_like(util_factors[i][0], requires_grad=False).cuda()
util_factors[i].append(prior)
util_factors[i] = torch.cat([p if len(p.size()) == 3 else p.unsqueeze(1)
for p in util_factors[i]], dim=1)
util_factors[i] = self.reduce_potentials[i](util_factors[i]).squeeze(1)
util_factors[i] = F.softmax(util_factors[i], dim=1).unsqueeze(2)
attention.append(torch.bmm(utils[i].transpose(1, 2), util_factors[i]).squeeze(2))
return attention
class NaiveAttention(nn.Module):
def __init__(self):
"""
Used for ablation analysis - removing attention.
"""
super(NaiveAttention, self).__init__()
def forward(self, utils, priors):
atten = []
spatial_atten = []
for u, p in zip(utils, priors):
if type(u) is tuple:
u = u[1]
num_elements = u.shape[0]
if p is not None:
u = u.view(-1, u.shape[-2], u.shape[-1])
p = p.view(-1, p.shape[-2], p.shape[-1])
spatial_atten.append(
torch.bmm(p.transpose(1, 2), u).squeeze(2).view(num_elements, -1, u.shape[-2], u.shape[-1]))
else:
spatial_atten.append(u.mean(2))
continue
if p is not None:
atten.append(torch.bmm(u.transpose(1, 2), p.unsqueeze(2)).squeeze(2))
else:
atten.append(u.mean(1))
return atten, spatial_atten |