File size: 1,441 Bytes
3c8d75e
b20af9f
 
 
 
 
 
3c8d75e
 
 
 
b20af9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import torch
import numpy as np
from modules.models import *
from util import get_prompt_template
from PIL import Image


def greet(name):
    return "Hello " + name + "!!"


def main():
    device = "cuda:0" if torch.cuda.is_available() else "cpu"

    # Get model
    model_conf_file = f'./config/model/ACL_ViT16.yaml'
    model = ACL(model_conf_file, device)
    model.train(False)
    model.load('./pretrain/Param_best.pth')

    # Get placeholder text
    prompt_template, text_pos_at_prompt, prompt_length = get_prompt_template()

    # Input pre processing

    # Inference
    placeholder_tokens = model.get_placeholder_token(prompt_template.replace('{}', ''))
    # audio_driven_embedding = model.encode_audio(audios.to(model.device), placeholder_tokens, text_pos_at_prompt,
    #                                             prompt_length)

    # Localization result
    # out_dict = model(images.to(model.device), audio_driven_embedding, 352)
    # seg = out_dict['heatmap'][j:j + 1]
    # seg_image = ((1 - seg.squeeze().detach().cpu().numpy()) * 255).astype(np.uint8)
    # seg_image = Image.fromarray(seg_image)
    heatmap_image = cv2.applyColorMap(np.array(seg_image), cv2.COLORMAP_JET)
    # overlaid_image = cv2.addWeighted(np.array(original_image), 0.5, heatmap_image, 0.5, 0)


if __name__ == "__main__":
    iface = gr.Interface(fn=greet, inputs="text", outputs="text")
    iface.launch()

    main()