File size: 7,386 Bytes
b20af9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# --------------------------------------------------------
# BEATs: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
# Github source: https://github.com/microsoft/unilm/tree/master/beats
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------

import math
import warnings
import torch
from torch import Tensor, nn
import torch.nn.functional as F


class GradMultiply(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, scale):
        ctx.scale = scale
        res = x.new(x)
        return res

    @staticmethod
    def backward(ctx, grad):
        return grad * ctx.scale, None


class SamePad(nn.Module):
    def __init__(self, kernel_size, causal=False):
        super().__init__()
        if causal:
            self.remove = kernel_size - 1
        else:
            self.remove = 1 if kernel_size % 2 == 0 else 0

    def forward(self, x):
        if self.remove > 0:
            x = x[:, :, : -self.remove]
        return x


class Swish(nn.Module):
    def __init__(self):
        super(Swish, self).__init__()
        self.act = torch.nn.Sigmoid()

    def forward(self, x):
        return x * self.act(x)


class GLU_Linear(nn.Module):
    def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
        super(GLU_Linear, self).__init__()

        self.glu_type = glu_type
        self.output_dim = output_dim

        if glu_type == "sigmoid":
            self.glu_act = torch.nn.Sigmoid()
        elif glu_type == "swish":
            self.glu_act = Swish()
        elif glu_type == "relu":
            self.glu_act = torch.nn.ReLU()
        elif glu_type == "gelu":
            self.glu_act = torch.nn.GELU()

        if bias_in_glu:
            self.linear = nn.Linear(input_dim, output_dim * 2, True)
        else:
            self.linear = nn.Linear(input_dim, output_dim * 2, False)

    def forward(self, x):
        # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
        x = self.linear(x)

        if self.glu_type == "bilinear":
            x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
        else:
            x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))

        return x


def gelu_accurate(x):
    if not hasattr(gelu_accurate, "_a"):
        gelu_accurate._a = math.sqrt(2 / math.pi)
    return (
        0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
    )


def gelu(x: torch.Tensor) -> torch.Tensor:
    return torch.nn.functional.gelu(x.float()).type_as(x)


def get_activation_fn(activation: str):
    """Returns the activation function corresponding to `activation`"""

    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return gelu
    elif activation == "gelu_fast":
        warnings.warn(
            "--activation-fn=gelu_fast has been renamed to gelu_accurate"
        )
        return gelu_accurate
    elif activation == "gelu_accurate":
        return gelu_accurate
    elif activation == "tanh":
        return torch.tanh
    elif activation == "linear":
        return lambda x: x
    elif activation == "glu":
        return lambda x: x
    else:
        raise RuntimeError("--activation-fn {} not supported".format(activation))


def quant_noise(module, p, block_size):
    """
    Wraps modules and applies quantization noise to the weights for
    subsequent quantization with Iterative Product Quantization as
    described in "Training with Quantization Noise for Extreme Model Compression"

    Args:
        - module: nn.Module
        - p: amount of Quantization Noise
        - block_size: size of the blocks for subsequent quantization with iPQ

    Remarks:
        - Module weights must have the right sizes wrt the block size
        - Only Linear, Embedding and Conv2d modules are supported for the moment
        - For more detail on how to quantize by blocks with convolutional weights,
          see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
        - We implement the simplest form of noise here as stated in the paper
          which consists in randomly dropping blocks
    """

    # if no quantization noise, don't register hook
    if p <= 0:
        return module

    # supported modules
    assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))

    # test whether module.weight has the right sizes wrt block_size
    is_conv = module.weight.ndim == 4

    # 2D matrix
    if not is_conv:
        assert (
            module.weight.size(1) % block_size == 0
        ), "Input features must be a multiple of block sizes"

    # 4D matrix
    else:
        # 1x1 convolutions
        if module.kernel_size == (1, 1):
            assert (
                module.in_channels % block_size == 0
            ), "Input channels must be a multiple of block sizes"
        # regular convolutions
        else:
            k = module.kernel_size[0] * module.kernel_size[1]
            assert k % block_size == 0, "Kernel size must be a multiple of block size"

    def _forward_pre_hook(mod, input):
        # no noise for evaluation
        if mod.training:
            if not is_conv:
                # gather weight and sizes
                weight = mod.weight
                in_features = weight.size(1)
                out_features = weight.size(0)

                # split weight matrix into blocks and randomly drop selected blocks
                mask = torch.zeros(
                    in_features // block_size * out_features, device=weight.device
                )
                mask.bernoulli_(p)
                mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)

            else:
                # gather weight and sizes
                weight = mod.weight
                in_channels = mod.in_channels
                out_channels = mod.out_channels

                # split weight matrix into blocks and randomly drop selected blocks
                if mod.kernel_size == (1, 1):
                    mask = torch.zeros(
                        int(in_channels // block_size * out_channels),
                        device=weight.device,
                    )
                    mask.bernoulli_(p)
                    mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
                else:
                    mask = torch.zeros(
                        weight.size(0), weight.size(1), device=weight.device
                    )
                    mask.bernoulli_(p)
                    mask = (
                        mask.unsqueeze(2)
                        .unsqueeze(3)
                        .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
                    )

            # scale weights and apply mask
            mask = mask.to(
                torch.bool
            )  # x.bool() is not currently supported in TorchScript
            s = 1 / (1 - p)
            mod.weight.data = s * weight.masked_fill(mask, 0)

    module.register_forward_pre_hook(_forward_pre_hook)
    return module