syubraj commited on
Commit
f057211
1 Parent(s): 5a6e5cd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, MT5ForConditionalGeneration
3
+
4
+ # Load tokenizer and model
5
+ checkpoint = "syubraj/RomanEng2Nep-v2"
6
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
7
+ model = MT5ForConditionalGeneration.from_pretrained(checkpoint)
8
+
9
+ # Set max sequence length
10
+ max_seq_len = 20
11
+
12
+ # Define the translation function
13
+ def translate(text):
14
+ # Tokenize the input text with a max length of 20
15
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len)
16
+
17
+ # Generate translation
18
+ translated = model.generate(**inputs)
19
+
20
+ # Decode the translated tokens back to text
21
+ translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
22
+ return translated_text
23
+
24
+ # Gradio interface
25
+ iface = gr.Interface(
26
+ fn=translate, # function to use for inference
27
+ inputs="text", # input type
28
+ outputs="text", # output type
29
+ title="Romanized English to Nepali Transliterator",
30
+ description="Translate Romanized English text into Nepali.",
31
+ examples=[["ahile"],["prakriti"], ["mahasagar"], ["pradarshan"],["khutkela"], ["nandan"], ["khola"]]
32
+ )
33
+
34
+ # Launch the Gradio app
35
+ iface.launch()