File size: 80,195 Bytes
af9db04
1
{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.13","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"nvidiaTeslaT4","dataSources":[{"sourceId":8630177,"sourceType":"datasetVersion","datasetId":5167299}],"dockerImageVersionId":30733,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":true}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"!pip install sentence_transformers","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2024-06-07T09:20:34.508067Z","iopub.execute_input":"2024-06-07T09:20:34.508357Z","iopub.status.idle":"2024-06-07T09:20:48.498196Z","shell.execute_reply.started":"2024-06-07T09:20:34.508331Z","shell.execute_reply":"2024-06-07T09:20:48.497131Z"},"trusted":true},"execution_count":1,"outputs":[{"name":"stdout","text":"Collecting sentence_transformers\n  Downloading sentence_transformers-3.0.0-py3-none-any.whl.metadata (10 kB)\nRequirement already satisfied: transformers<5.0.0,>=4.34.0 in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (4.41.2)\nRequirement already satisfied: tqdm in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (4.66.4)\nRequirement already satisfied: torch>=1.11.0 in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (2.1.2)\nRequirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (1.26.4)\nRequirement already satisfied: scikit-learn in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (1.2.2)\nRequirement already satisfied: scipy in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (1.11.4)\nRequirement already satisfied: huggingface-hub>=0.15.1 in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (0.23.2)\nRequirement already satisfied: Pillow in /opt/conda/lib/python3.10/site-packages (from sentence_transformers) (9.5.0)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence_transformers) (3.13.1)\nRequirement already satisfied: fsspec>=2023.5.0 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence_transformers) (2024.3.1)\nRequirement already satisfied: packaging>=20.9 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence_transformers) (21.3)\nRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence_transformers) (6.0.1)\nRequirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence_transformers) (2.32.3)\nRequirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub>=0.15.1->sentence_transformers) (4.9.0)\nRequirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch>=1.11.0->sentence_transformers) (1.12.1)\nRequirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch>=1.11.0->sentence_transformers) (3.2.1)\nRequirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch>=1.11.0->sentence_transformers) (3.1.2)\nRequirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers<5.0.0,>=4.34.0->sentence_transformers) (2023.12.25)\nRequirement already satisfied: tokenizers<0.20,>=0.19 in /opt/conda/lib/python3.10/site-packages (from transformers<5.0.0,>=4.34.0->sentence_transformers) (0.19.1)\nRequirement already satisfied: safetensors>=0.4.1 in /opt/conda/lib/python3.10/site-packages (from transformers<5.0.0,>=4.34.0->sentence_transformers) (0.4.3)\nRequirement already satisfied: joblib>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from scikit-learn->sentence_transformers) (1.4.2)\nRequirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.10/site-packages (from scikit-learn->sentence_transformers) (3.2.0)\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging>=20.9->huggingface-hub>=0.15.1->sentence_transformers) (3.1.1)\nRequirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch>=1.11.0->sentence_transformers) (2.1.3)\nRequirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.15.1->sentence_transformers) (3.3.2)\nRequirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.15.1->sentence_transformers) (3.6)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.15.1->sentence_transformers) (1.26.18)\nRequirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface-hub>=0.15.1->sentence_transformers) (2024.2.2)\nRequirement already satisfied: mpmath<1.4.0,>=1.1.0 in /opt/conda/lib/python3.10/site-packages (from sympy->torch>=1.11.0->sentence_transformers) (1.3.0)\nDownloading sentence_transformers-3.0.0-py3-none-any.whl (224 kB)\n\u001b[2K   \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m224.7/224.7 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n\u001b[?25hInstalling collected packages: sentence_transformers\nSuccessfully installed sentence_transformers-3.0.0\n","output_type":"stream"}]},{"cell_type":"code","source":"import torch\nfrom torch.utils.data import DataLoader\nimport math\nimport pandas as pd\nfrom sentence_transformers import SentenceTransformer,  LoggingHandler, losses, models, util\nfrom sentence_transformers.evaluation import EmbeddingSimilarityEvaluator\nfrom sentence_transformers.readers import InputExample\nimport logging\nfrom datetime import datetime","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:20:57.783272Z","iopub.execute_input":"2024-06-07T09:20:57.784034Z","iopub.status.idle":"2024-06-07T09:21:17.821099Z","shell.execute_reply.started":"2024-06-07T09:20:57.783987Z","shell.execute_reply":"2024-06-07T09:21:17.820337Z"},"trusted":true},"execution_count":2,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/sentence_transformers/cross_encoder/CrossEncoder.py:11: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n  from tqdm.autonotebook import tqdm, trange\n2024-06-07 09:21:07.744572: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n2024-06-07 09:21:07.744669: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n2024-06-07 09:21:07.920594: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n","output_type":"stream"}]},{"cell_type":"code","source":"df = pd.read_csv('/kaggle/input/sentence-similarity-nepali-dataset/stsb_multi_mt_nepali_cleaned.csv')\ndf.head()","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:21:35.985210Z","iopub.execute_input":"2024-06-07T09:21:35.985876Z","iopub.status.idle":"2024-06-07T09:21:36.088420Z","shell.execute_reply.started":"2024-06-07T09:21:35.985837Z","shell.execute_reply":"2024-06-07T09:21:36.087324Z"},"trusted":true},"execution_count":3,"outputs":[{"execution_count":3,"output_type":"execute_result","data":{"text/plain":"                                    sentence1  \\\n0                      एउटा विमान उडिरहेको छ।   \n1       एउटा मान्छे ठूलो बाँसुरी बजाइरहेको छ।   \n2  एक व्यक्ति पिज्जामा टुक्रा चिज फैलाउँदै छ।   \n3                     तीन जना चेस खेल्दै छन्।   \n4                 एउटा मान्छे सेलो बजाउँदै छ।   \n\n                                           sentence2  score  \n0                              हवाई जहाज उडिरहेको छ।   5.00  \n1                     एउटा मान्छे बाँसुरी बजाउँदै छ।   3.80  \n2  एक जना मानिसले न पकाएको पिज्जामा टुक्रा पारेको...   3.80  \n3                   दुई जना पुरुष चेस खेलिरहेका छन्।   2.60  \n4                     बसेको मान्छे सेलो खेलिरहेको छ।   4.25  ","text/html":"<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>sentence1</th>\n      <th>sentence2</th>\n      <th>score</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>एउटा विमान उडिरहेको छ।</td>\n      <td>हवाई जहाज उडिरहेको छ।</td>\n      <td>5.00</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>एउटा मान्छे ठूलो बाँसुरी बजाइरहेको छ।</td>\n      <td>एउटा मान्छे बाँसुरी बजाउँदै छ।</td>\n      <td>3.80</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>एक व्यक्ति पिज्जामा टुक्रा चिज फैलाउँदै छ।</td>\n      <td>एक जना मानिसले न पकाएको पिज्जामा टुक्रा पारेको...</td>\n      <td>3.80</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>तीन जना चेस खेल्दै छन्।</td>\n      <td>दुई जना पुरुष चेस खेलिरहेका छन्।</td>\n      <td>2.60</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>एउटा मान्छे सेलो बजाउँदै छ।</td>\n      <td>बसेको मान्छे सेलो खेलिरहेको छ।</td>\n      <td>4.25</td>\n    </tr>\n  </tbody>\n</table>\n</div>"},"metadata":{}}]},{"cell_type":"code","source":"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\ndevice","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:21:51.918282Z","iopub.execute_input":"2024-06-07T09:21:51.918725Z","iopub.status.idle":"2024-06-07T09:21:51.986584Z","shell.execute_reply.started":"2024-06-07T09:21:51.918693Z","shell.execute_reply":"2024-06-07T09:21:51.985674Z"},"trusted":true},"execution_count":4,"outputs":[{"execution_count":4,"output_type":"execute_result","data":{"text/plain":"device(type='cuda')"},"metadata":{}}]},{"cell_type":"code","source":"model_name = 'Rajan/NepaliBERT'\n\ntrain_batch_size = 16\nnum_epochs = 100\nmodel_save_path = '/kaggle/working/sentence_transformer_nepali_retrained'","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:22:38.691108Z","iopub.execute_input":"2024-06-07T09:22:38.692024Z","iopub.status.idle":"2024-06-07T09:22:38.696385Z","shell.execute_reply.started":"2024-06-07T09:22:38.691988Z","shell.execute_reply":"2024-06-07T09:22:38.695400Z"},"trusted":true},"execution_count":5,"outputs":[]},{"cell_type":"code","source":"word_embedding_model = models.Transformer(model_name)\npooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), \n                               pooling_mode_mean_tokens=True,\n                               pooling_mode_cls_token=False,\n                               pooling_mode_max_tokens=False,\n                               )","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:22:49.319192Z","iopub.execute_input":"2024-06-07T09:22:49.319808Z","iopub.status.idle":"2024-06-07T09:22:59.027341Z","shell.execute_reply.started":"2024-06-07T09:22:49.319777Z","shell.execute_reply":"2024-06-07T09:22:59.026492Z"},"trusted":true},"execution_count":6,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n  warnings.warn(\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"config.json:   0%|          | 0.00/569 [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"5b0294f54f164b19aa55de90aab53b64"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"pytorch_model.bin:   0%|          | 0.00/328M [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"9f3c756dada84ce1be722df72ba94cbf"}},"metadata":{}},{"name":"stderr","text":"/opt/conda/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n  return self.fget.__get__(instance, owner)()\nSome weights of BertModel were not initialized from the model checkpoint at Rajan/NepaliBERT and are newly initialized: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"vocab.txt:   0%|          | 0.00/987k [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"62a80def014b446fafde73ebda5f077b"}},"metadata":{}}]},{"cell_type":"code","source":"model = SentenceTransformer(modules=[word_embedding_model, pooling_model])\nmodel.to(device)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:23:04.686468Z","iopub.execute_input":"2024-06-07T09:23:04.686825Z","iopub.status.idle":"2024-06-07T09:23:04.972073Z","shell.execute_reply.started":"2024-06-07T09:23:04.686796Z","shell.execute_reply":"2024-06-07T09:23:04.971100Z"},"trusted":true},"execution_count":7,"outputs":[{"execution_count":7,"output_type":"execute_result","data":{"text/plain":"SentenceTransformer(\n  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel \n  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n)"},"metadata":{}}]},{"cell_type":"code","source":"input_example_samples = []\n\nfor index, row in df.iterrows():\n    score = float(row['score']) / 5.0 # Normalize score between 0 to 1\n    inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)\n\n    input_example_samples.append(inp_example)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:23:20.217593Z","iopub.execute_input":"2024-06-07T09:23:20.218585Z","iopub.status.idle":"2024-06-07T09:23:20.596802Z","shell.execute_reply.started":"2024-06-07T09:23:20.218538Z","shell.execute_reply":"2024-06-07T09:23:20.595828Z"},"trusted":true},"execution_count":8,"outputs":[]},{"cell_type":"code","source":"len(input_example_samples)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:23:29.834334Z","iopub.execute_input":"2024-06-07T09:23:29.834700Z","iopub.status.idle":"2024-06-07T09:23:29.840819Z","shell.execute_reply.started":"2024-06-07T09:23:29.834672Z","shell.execute_reply":"2024-06-07T09:23:29.839818Z"},"trusted":true},"execution_count":9,"outputs":[{"execution_count":9,"output_type":"execute_result","data":{"text/plain":"5749"},"metadata":{}}]},{"cell_type":"code","source":"import random\n\nrandom.shuffle(input_example_samples)\n\ntrain_ratio = 0.8\ntest_ratio = 0.1\ndev_ratio = 0.1\n\nnum_examples = len(input_example_samples)\nnum_train = int(num_examples * train_ratio)\nnum_dev = int(num_examples * dev_ratio)\nnum_test = int(num_examples * test_ratio)\n\n\ntrain_samples = input_example_samples[:num_train]\ndev_samples = input_example_samples[num_train:num_train + num_dev]\ntest_samples = input_example_samples[num_train + num_dev:]","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:23:40.757863Z","iopub.execute_input":"2024-06-07T09:23:40.758228Z","iopub.status.idle":"2024-06-07T09:23:40.770231Z","shell.execute_reply.started":"2024-06-07T09:23:40.758185Z","shell.execute_reply":"2024-06-07T09:23:40.769384Z"},"trusted":true},"execution_count":10,"outputs":[]},{"cell_type":"code","source":"print(\"Train samples:\", len(train_samples))\nprint(\"Dev samples:\", len(dev_samples))\nprint(\"Test samples:\", len(test_samples))","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:23:50.732924Z","iopub.execute_input":"2024-06-07T09:23:50.733307Z","iopub.status.idle":"2024-06-07T09:23:50.738112Z","shell.execute_reply.started":"2024-06-07T09:23:50.733278Z","shell.execute_reply":"2024-06-07T09:23:50.737214Z"},"trusted":true},"execution_count":11,"outputs":[{"name":"stdout","text":"Train samples: 4599\nDev samples: 574\nTest samples: 576\n","output_type":"stream"}]},{"cell_type":"code","source":"train_dataloader = DataLoader(train_samples, shuffle=True, batch_size = train_batch_size)\ntrain_loss = losses.CosineSimilarityLoss(model=model)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:24:01.968270Z","iopub.execute_input":"2024-06-07T09:24:01.968616Z","iopub.status.idle":"2024-06-07T09:24:01.973660Z","shell.execute_reply.started":"2024-06-07T09:24:01.968590Z","shell.execute_reply":"2024-06-07T09:24:01.972551Z"},"trusted":true},"execution_count":12,"outputs":[]},{"cell_type":"code","source":"evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='stsb-dev-nepali')","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:24:12.821109Z","iopub.execute_input":"2024-06-07T09:24:12.821761Z","iopub.status.idle":"2024-06-07T09:24:12.826764Z","shell.execute_reply.started":"2024-06-07T09:24:12.821729Z","shell.execute_reply":"2024-06-07T09:24:12.825847Z"},"trusted":true},"execution_count":13,"outputs":[]},{"cell_type":"code","source":"warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:24:21.861041Z","iopub.execute_input":"2024-06-07T09:24:21.861480Z","iopub.status.idle":"2024-06-07T09:24:21.865930Z","shell.execute_reply.started":"2024-06-07T09:24:21.861444Z","shell.execute_reply":"2024-06-07T09:24:21.864816Z"},"trusted":true},"execution_count":14,"outputs":[]},{"cell_type":"code","source":"model.fit(train_objectives=[(train_dataloader, train_loss)],\n          evaluator = evaluator,\n          epochs = num_epochs,\n          evaluation_steps = 1000,\n          warmup_steps = warmup_steps,\n          output_path = model_save_path\n)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T09:24:32.074801Z","iopub.execute_input":"2024-06-07T09:24:32.075526Z","iopub.status.idle":"2024-06-07T11:23:57.217449Z","shell.execute_reply.started":"2024-06-07T09:24:32.075491Z","shell.execute_reply":"2024-06-07T11:23:57.216249Z"},"trusted":true},"execution_count":15,"outputs":[{"name":"stderr","text":"\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.\n\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n\u001b[34m\u001b[1mwandb\u001b[0m: Paste an API key from your profile and hit enter, or press ctrl+c to quit:","output_type":"stream"},{"output_type":"stream","name":"stdin","text":"  ········································\n"},{"name":"stderr","text":"\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"wandb version 0.17.1 is available!  To upgrade, please run:\n $ pip install wandb --upgrade"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"Tracking run with wandb version 0.17.0"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"Run data is saved locally in <code>/kaggle/working/wandb/run-20240607_092546-cihx2tex</code>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"Syncing run <strong><a href='https://wandb.ai/syubraj/sentence-transformers/runs/cihx2tex' target=\"_blank\">checkpoints/model</a></strong> to <a href='https://wandb.ai/syubraj/sentence-transformers' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":" View project at <a href='https://wandb.ai/syubraj/sentence-transformers' target=\"_blank\">https://wandb.ai/syubraj/sentence-transformers</a>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":" View run at <a href='https://wandb.ai/syubraj/sentence-transformers/runs/cihx2tex' target=\"_blank\">https://wandb.ai/syubraj/sentence-transformers/runs/cihx2tex</a>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"<IPython.core.display.HTML object>","text/html":"\n    <div>\n      \n      <progress value='28800' max='28800' style='width:300px; height:20px; vertical-align: middle;'></progress>\n      [28800/28800 1:57:50, Epoch 100/100]\n    </div>\n    <table border=\"1\" class=\"dataframe\">\n  <thead>\n <tr style=\"text-align: left;\">\n      <th>Step</th>\n      <th>Training Loss</th>\n      <th>Validation Loss</th>\n      <th>Stsb-dev-nepali Pearson Cosine</th>\n      <th>Stsb-dev-nepali Spearman Cosine</th>\n      <th>Stsb-dev-nepali Pearson Manhattan</th>\n      <th>Stsb-dev-nepali Spearman Manhattan</th>\n      <th>Stsb-dev-nepali Pearson Euclidean</th>\n      <th>Stsb-dev-nepali Spearman Euclidean</th>\n      <th>Stsb-dev-nepali Pearson Dot</th>\n      <th>Stsb-dev-nepali Spearman Dot</th>\n      <th>Stsb-dev-nepali Pearson Max</th>\n      <th>Stsb-dev-nepali Spearman Max</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <td>288</td>\n      <td>No log</td>\n      <td>No log</td>\n      <td>0.584433</td>\n      <td>0.529995</td>\n      <td>0.570037</td>\n      <td>0.535467</td>\n      <td>0.570009</td>\n      <td>0.534883</td>\n      <td>0.404444</td>\n      <td>0.411658</td>\n      <td>0.584433</td>\n      <td>0.535467</td>\n    </tr>\n    <tr>\n      <td>576</td>\n      <td>0.072300</td>\n      <td>No log</td>\n      <td>0.630269</td>\n      <td>0.579386</td>\n      <td>0.590948</td>\n      <td>0.558463</td>\n      <td>0.590836</td>\n      <td>0.557443</td>\n      <td>0.509211</td>\n      <td>0.491773</td>\n      <td>0.630269</td>\n      <td>0.579386</td>\n    </tr>\n    <tr>\n      <td>864</td>\n      <td>0.072300</td>\n      <td>No log</td>\n      <td>0.658447</td>\n      <td>0.610811</td>\n      <td>0.612098</td>\n      <td>0.578173</td>\n      <td>0.612644</td>\n      <td>0.578573</td>\n      <td>0.547548</td>\n      <td>0.528451</td>\n      <td>0.658447</td>\n      <td>0.610811</td>\n    </tr>\n    <tr>\n      <td>1000</td>\n      <td>0.047000</td>\n      <td>No log</td>\n      <td>0.666375</td>\n      <td>0.614651</td>\n      <td>0.626983</td>\n      <td>0.590599</td>\n      <td>0.627172</td>\n      <td>0.590727</td>\n      <td>0.562621</td>\n      <td>0.535285</td>\n      <td>0.666375</td>\n      <td>0.614651</td>\n    </tr>\n    <tr>\n      <td>1152</td>\n      <td>0.047000</td>\n      <td>No log</td>\n      <td>0.672237</td>\n      <td>0.625900</td>\n      <td>0.627099</td>\n      <td>0.590611</td>\n      <td>0.628047</td>\n      <td>0.590636</td>\n      <td>0.560009</td>\n      <td>0.540695</td>\n      <td>0.672237</td>\n      <td>0.625900</td>\n    </tr>\n    <tr>\n      <td>1440</td>\n      <td>0.047000</td>\n      <td>No log</td>\n      <td>0.680891</td>\n      <td>0.635564</td>\n      <td>0.637430</td>\n      <td>0.598613</td>\n      <td>0.637586</td>\n      <td>0.598777</td>\n      <td>0.557042</td>\n      <td>0.541733</td>\n      <td>0.680891</td>\n      <td>0.635564</td>\n    </tr>\n    <tr>\n      <td>1728</td>\n      <td>0.034000</td>\n      <td>No log</td>\n      <td>0.672592</td>\n      <td>0.632945</td>\n      <td>0.637961</td>\n      <td>0.598947</td>\n      <td>0.637936</td>\n      <td>0.598995</td>\n      <td>0.550762</td>\n      <td>0.539140</td>\n      <td>0.672592</td>\n      <td>0.632945</td>\n    </tr>\n    <tr>\n      <td>2000</td>\n      <td>0.021700</td>\n      <td>No log</td>\n      <td>0.672088</td>\n      <td>0.637508</td>\n      <td>0.638572</td>\n      <td>0.600721</td>\n      <td>0.638595</td>\n      <td>0.600175</td>\n      <td>0.562049</td>\n      <td>0.553229</td>\n      <td>0.672088</td>\n      <td>0.637508</td>\n    </tr>\n    <tr>\n      <td>2016</td>\n      <td>0.021700</td>\n      <td>No log</td>\n      <td>0.675216</td>\n      <td>0.638240</td>\n      <td>0.637745</td>\n      <td>0.599568</td>\n      <td>0.637940</td>\n      <td>0.599418</td>\n      <td>0.567959</td>\n      <td>0.554272</td>\n      <td>0.675216</td>\n      <td>0.638240</td>\n    </tr>\n    <tr>\n      <td>2304</td>\n      <td>0.021700</td>\n      <td>No log</td>\n      <td>0.687561</td>\n      <td>0.646783</td>\n      <td>0.645779</td>\n      <td>0.608069</td>\n      <td>0.645841</td>\n      <td>0.607783</td>\n      <td>0.583634</td>\n      <td>0.568408</td>\n      <td>0.687561</td>\n      <td>0.646783</td>\n    </tr>\n    <tr>\n      <td>2592</td>\n      <td>0.013700</td>\n      <td>No log</td>\n      <td>0.668847</td>\n      <td>0.634789</td>\n      <td>0.636318</td>\n      <td>0.600847</td>\n      <td>0.637495</td>\n      <td>0.601395</td>\n      <td>0.557504</td>\n      <td>0.548944</td>\n      <td>0.668847</td>\n      <td>0.634789</td>\n    </tr>\n    <tr>\n      <td>2880</td>\n      <td>0.013700</td>\n      <td>No log</td>\n      <td>0.662736</td>\n      <td>0.633178</td>\n      <td>0.636326</td>\n      <td>0.602494</td>\n      <td>0.636993</td>\n      <td>0.603103</td>\n      <td>0.553057</td>\n      <td>0.542469</td>\n      <td>0.662736</td>\n      <td>0.633178</td>\n    </tr>\n    <tr>\n      <td>3000</td>\n      <td>0.010200</td>\n      <td>No log</td>\n      <td>0.674300</td>\n      <td>0.642720</td>\n      <td>0.637734</td>\n      <td>0.605677</td>\n      <td>0.637013</td>\n      <td>0.605059</td>\n      <td>0.582309</td>\n      <td>0.572222</td>\n      <td>0.674300</td>\n      <td>0.642720</td>\n    </tr>\n    <tr>\n      <td>3168</td>\n      <td>0.010200</td>\n      <td>No log</td>\n      <td>0.670390</td>\n      <td>0.637020</td>\n      <td>0.638372</td>\n      <td>0.606334</td>\n      <td>0.638889</td>\n      <td>0.606744</td>\n      <td>0.573481</td>\n      <td>0.563532</td>\n      <td>0.670390</td>\n      <td>0.637020</td>\n    </tr>\n    <tr>\n      <td>3456</td>\n      <td>0.010200</td>\n      <td>No log</td>\n      <td>0.683995</td>\n      <td>0.651526</td>\n      <td>0.642882</td>\n      <td>0.611911</td>\n      <td>0.643475</td>\n      <td>0.613953</td>\n      <td>0.595411</td>\n      <td>0.583784</td>\n      <td>0.683995</td>\n      <td>0.651526</td>\n    </tr>\n    <tr>\n      <td>3744</td>\n      <td>0.008400</td>\n      <td>No log</td>\n      <td>0.681659</td>\n      <td>0.654595</td>\n      <td>0.642284</td>\n      <td>0.613565</td>\n      <td>0.643097</td>\n      <td>0.613936</td>\n      <td>0.578661</td>\n      <td>0.570580</td>\n      <td>0.681659</td>\n      <td>0.654595</td>\n    </tr>\n    <tr>\n      <td>4000</td>\n      <td>0.006900</td>\n      <td>No log</td>\n      <td>0.677811</td>\n      <td>0.639968</td>\n      <td>0.641335</td>\n      <td>0.606235</td>\n      <td>0.641127</td>\n      <td>0.607464</td>\n      <td>0.586985</td>\n      <td>0.572039</td>\n      <td>0.677811</td>\n      <td>0.639968</td>\n    </tr>\n    <tr>\n      <td>4032</td>\n      <td>0.006900</td>\n      <td>No log</td>\n      <td>0.687130</td>\n      <td>0.660984</td>\n      <td>0.645757</td>\n      <td>0.614754</td>\n      <td>0.646508</td>\n      <td>0.616148</td>\n      <td>0.591385</td>\n      <td>0.587501</td>\n      <td>0.687130</td>\n      <td>0.660984</td>\n    </tr>\n    <tr>\n      <td>4320</td>\n      <td>0.006900</td>\n      <td>No log</td>\n      <td>0.684831</td>\n      <td>0.649511</td>\n      <td>0.639959</td>\n      <td>0.605676</td>\n      <td>0.641196</td>\n      <td>0.608222</td>\n      <td>0.581764</td>\n      <td>0.581682</td>\n      <td>0.684831</td>\n      <td>0.649511</td>\n    </tr>\n    <tr>\n      <td>4608</td>\n      <td>0.006000</td>\n      <td>No log</td>\n      <td>0.686712</td>\n      <td>0.657447</td>\n      <td>0.641772</td>\n      <td>0.609292</td>\n      <td>0.642985</td>\n      <td>0.610901</td>\n      <td>0.576227</td>\n      <td>0.573099</td>\n      <td>0.686712</td>\n      <td>0.657447</td>\n    </tr>\n    <tr>\n      <td>4896</td>\n      <td>0.006000</td>\n      <td>No log</td>\n      <td>0.682227</td>\n      <td>0.648598</td>\n      <td>0.637055</td>\n      <td>0.603216</td>\n      <td>0.638023</td>\n      <td>0.604935</td>\n      <td>0.579578</td>\n      <td>0.577300</td>\n      <td>0.682227</td>\n      <td>0.648598</td>\n    </tr>\n    <tr>\n      <td>5000</td>\n      <td>0.005300</td>\n      <td>No log</td>\n      <td>0.694098</td>\n      <td>0.658874</td>\n      <td>0.645419</td>\n      <td>0.611588</td>\n      <td>0.645915</td>\n      <td>0.612623</td>\n      <td>0.589180</td>\n      <td>0.580972</td>\n      <td>0.694098</td>\n      <td>0.658874</td>\n    </tr>\n    <tr>\n      <td>5184</td>\n      <td>0.005300</td>\n      <td>No log</td>\n      <td>0.693652</td>\n      <td>0.659230</td>\n      <td>0.640168</td>\n      <td>0.609070</td>\n      <td>0.640787</td>\n      <td>0.610852</td>\n      <td>0.587097</td>\n      <td>0.587403</td>\n      <td>0.693652</td>\n      <td>0.659230</td>\n    </tr>\n    <tr>\n      <td>5472</td>\n      <td>0.005300</td>\n      <td>No log</td>\n      <td>0.682293</td>\n      <td>0.648801</td>\n      <td>0.636293</td>\n      <td>0.605448</td>\n      <td>0.637196</td>\n      <td>0.607135</td>\n      <td>0.569032</td>\n      <td>0.569749</td>\n      <td>0.682293</td>\n      <td>0.648801</td>\n    </tr>\n    <tr>\n      <td>5760</td>\n      <td>0.004700</td>\n      <td>No log</td>\n      <td>0.681732</td>\n      <td>0.643594</td>\n      <td>0.645259</td>\n      <td>0.611073</td>\n      <td>0.645454</td>\n      <td>0.612765</td>\n      <td>0.561682</td>\n      <td>0.563203</td>\n      <td>0.681732</td>\n      <td>0.643594</td>\n    </tr>\n    <tr>\n      <td>6000</td>\n      <td>0.004400</td>\n      <td>No log</td>\n      <td>0.690924</td>\n      <td>0.657588</td>\n      <td>0.640870</td>\n      <td>0.609510</td>\n      <td>0.640708</td>\n      <td>0.610011</td>\n      <td>0.581180</td>\n      <td>0.585519</td>\n      <td>0.690924</td>\n      <td>0.657588</td>\n    </tr>\n    <tr>\n      <td>6048</td>\n      <td>0.004400</td>\n      <td>No log</td>\n      <td>0.683515</td>\n      <td>0.651511</td>\n      <td>0.640402</td>\n      <td>0.611022</td>\n      <td>0.640222</td>\n      <td>0.611931</td>\n      <td>0.568924</td>\n      <td>0.577244</td>\n      <td>0.683515</td>\n      <td>0.651511</td>\n    </tr>\n    <tr>\n      <td>6336</td>\n      <td>0.004400</td>\n      <td>No log</td>\n      <td>0.686248</td>\n      <td>0.654053</td>\n      <td>0.637963</td>\n      <td>0.606188</td>\n      <td>0.638948</td>\n      <td>0.608142</td>\n      <td>0.559310</td>\n      <td>0.565979</td>\n      <td>0.686248</td>\n      <td>0.654053</td>\n    </tr>\n    <tr>\n      <td>6624</td>\n      <td>0.004100</td>\n      <td>No log</td>\n      <td>0.686070</td>\n      <td>0.654858</td>\n      <td>0.640249</td>\n      <td>0.607909</td>\n      <td>0.640664</td>\n      <td>0.609844</td>\n      <td>0.558051</td>\n      <td>0.569336</td>\n      <td>0.686070</td>\n      <td>0.654858</td>\n    </tr>\n    <tr>\n      <td>6912</td>\n      <td>0.004100</td>\n      <td>No log</td>\n      <td>0.685390</td>\n      <td>0.657148</td>\n      <td>0.638814</td>\n      <td>0.609791</td>\n      <td>0.638455</td>\n      <td>0.610202</td>\n      <td>0.563527</td>\n      <td>0.574954</td>\n      <td>0.685390</td>\n      <td>0.657148</td>\n    </tr>\n    <tr>\n      <td>7000</td>\n      <td>0.003700</td>\n      <td>No log</td>\n      <td>0.690594</td>\n      <td>0.660332</td>\n      <td>0.644835</td>\n      <td>0.613544</td>\n      <td>0.645270</td>\n      <td>0.614964</td>\n      <td>0.550843</td>\n      <td>0.559976</td>\n      <td>0.690594</td>\n      <td>0.660332</td>\n    </tr>\n    <tr>\n      <td>7200</td>\n      <td>0.003700</td>\n      <td>No log</td>\n      <td>0.700908</td>\n      <td>0.669851</td>\n      <td>0.645415</td>\n      <td>0.614762</td>\n      <td>0.645557</td>\n      <td>0.616799</td>\n      <td>0.586183</td>\n      <td>0.590115</td>\n      <td>0.700908</td>\n      <td>0.669851</td>\n    </tr>\n    <tr>\n      <td>7488</td>\n      <td>0.003700</td>\n      <td>No log</td>\n      <td>0.701229</td>\n      <td>0.665315</td>\n      <td>0.643765</td>\n      <td>0.613783</td>\n      <td>0.643522</td>\n      <td>0.614661</td>\n      <td>0.578713</td>\n      <td>0.586350</td>\n      <td>0.701229</td>\n      <td>0.665315</td>\n    </tr>\n    <tr>\n      <td>7776</td>\n      <td>0.003700</td>\n      <td>No log</td>\n      <td>0.693888</td>\n      <td>0.660865</td>\n      <td>0.634922</td>\n      <td>0.602748</td>\n      <td>0.635528</td>\n      <td>0.605028</td>\n      <td>0.569599</td>\n      <td>0.582503</td>\n      <td>0.693888</td>\n      <td>0.660865</td>\n    </tr>\n    <tr>\n      <td>8000</td>\n      <td>0.003300</td>\n      <td>No log</td>\n      <td>0.688899</td>\n      <td>0.657787</td>\n      <td>0.637239</td>\n      <td>0.606793</td>\n      <td>0.637461</td>\n      <td>0.608048</td>\n      <td>0.548580</td>\n      <td>0.569625</td>\n      <td>0.688899</td>\n      <td>0.657787</td>\n    </tr>\n    <tr>\n      <td>8064</td>\n      <td>0.003300</td>\n      <td>No log</td>\n      <td>0.693032</td>\n      <td>0.660623</td>\n      <td>0.639450</td>\n      <td>0.608378</td>\n      <td>0.639657</td>\n      <td>0.610071</td>\n      <td>0.546249</td>\n      <td>0.565557</td>\n      <td>0.693032</td>\n      <td>0.660623</td>\n    </tr>\n    <tr>\n      <td>8352</td>\n      <td>0.003300</td>\n      <td>No log</td>\n      <td>0.694075</td>\n      <td>0.661374</td>\n      <td>0.641626</td>\n      <td>0.612388</td>\n      <td>0.642030</td>\n      <td>0.614020</td>\n      <td>0.550719</td>\n      <td>0.567732</td>\n      <td>0.694075</td>\n      <td>0.661374</td>\n    </tr>\n    <tr>\n      <td>8640</td>\n      <td>0.003100</td>\n      <td>No log</td>\n      <td>0.691424</td>\n      <td>0.657856</td>\n      <td>0.642259</td>\n      <td>0.612662</td>\n      <td>0.642158</td>\n      <td>0.613645</td>\n      <td>0.555179</td>\n      <td>0.566010</td>\n      <td>0.691424</td>\n      <td>0.657856</td>\n    </tr>\n    <tr>\n      <td>8928</td>\n      <td>0.003100</td>\n      <td>No log</td>\n      <td>0.701937</td>\n      <td>0.668785</td>\n      <td>0.643336</td>\n      <td>0.616171</td>\n      <td>0.643102</td>\n      <td>0.616016</td>\n      <td>0.556199</td>\n      <td>0.573776</td>\n      <td>0.701937</td>\n      <td>0.668785</td>\n    </tr>\n    <tr>\n      <td>9000</td>\n      <td>0.002800</td>\n      <td>No log</td>\n      <td>0.699238</td>\n      <td>0.664998</td>\n      <td>0.641475</td>\n      <td>0.610812</td>\n      <td>0.640916</td>\n      <td>0.610888</td>\n      <td>0.545261</td>\n      <td>0.568357</td>\n      <td>0.699238</td>\n      <td>0.664998</td>\n    </tr>\n    <tr>\n      <td>9216</td>\n      <td>0.002800</td>\n      <td>No log</td>\n      <td>0.695730</td>\n      <td>0.663908</td>\n      <td>0.640203</td>\n      <td>0.609653</td>\n      <td>0.640511</td>\n      <td>0.611674</td>\n      <td>0.542936</td>\n      <td>0.563601</td>\n      <td>0.695730</td>\n      <td>0.663908</td>\n    </tr>\n    <tr>\n      <td>9504</td>\n      <td>0.002700</td>\n      <td>No log</td>\n      <td>0.694337</td>\n      <td>0.662436</td>\n      <td>0.647258</td>\n      <td>0.619940</td>\n      <td>0.646689</td>\n      <td>0.619638</td>\n      <td>0.554716</td>\n      <td>0.567028</td>\n      <td>0.694337</td>\n      <td>0.662436</td>\n    </tr>\n    <tr>\n      <td>9792</td>\n      <td>0.002700</td>\n      <td>No log</td>\n      <td>0.697266</td>\n      <td>0.664574</td>\n      <td>0.645538</td>\n      <td>0.617708</td>\n      <td>0.646120</td>\n      <td>0.617901</td>\n      <td>0.546000</td>\n      <td>0.565709</td>\n      <td>0.697266</td>\n      <td>0.664574</td>\n    </tr>\n    <tr>\n      <td>10000</td>\n      <td>0.002500</td>\n      <td>No log</td>\n      <td>0.686296</td>\n      <td>0.652985</td>\n      <td>0.637337</td>\n      <td>0.606697</td>\n      <td>0.637700</td>\n      <td>0.608043</td>\n      <td>0.532231</td>\n      <td>0.552684</td>\n      <td>0.686296</td>\n      <td>0.652985</td>\n    </tr>\n    <tr>\n      <td>10080</td>\n      <td>0.002500</td>\n      <td>No log</td>\n      <td>0.694093</td>\n      <td>0.658690</td>\n      <td>0.640284</td>\n      <td>0.609180</td>\n      <td>0.640459</td>\n      <td>0.609831</td>\n      <td>0.545666</td>\n      <td>0.563524</td>\n      <td>0.694093</td>\n      <td>0.658690</td>\n    </tr>\n    <tr>\n      <td>10368</td>\n      <td>0.002500</td>\n      <td>No log</td>\n      <td>0.700033</td>\n      <td>0.667099</td>\n      <td>0.640387</td>\n      <td>0.610497</td>\n      <td>0.640633</td>\n      <td>0.611951</td>\n      <td>0.559141</td>\n      <td>0.572281</td>\n      <td>0.700033</td>\n      <td>0.667099</td>\n    </tr>\n    <tr>\n      <td>10656</td>\n      <td>0.002500</td>\n      <td>No log</td>\n      <td>0.698216</td>\n      <td>0.661396</td>\n      <td>0.644144</td>\n      <td>0.610973</td>\n      <td>0.644334</td>\n      <td>0.612198</td>\n      <td>0.550993</td>\n      <td>0.567513</td>\n      <td>0.698216</td>\n      <td>0.661396</td>\n    </tr>\n    <tr>\n      <td>10944</td>\n      <td>0.002500</td>\n      <td>No log</td>\n      <td>0.694627</td>\n      <td>0.660239</td>\n      <td>0.637672</td>\n      <td>0.607891</td>\n      <td>0.637426</td>\n      <td>0.607543</td>\n      <td>0.540661</td>\n      <td>0.559624</td>\n      <td>0.694627</td>\n      <td>0.660239</td>\n    </tr>\n    <tr>\n      <td>11000</td>\n      <td>0.002400</td>\n      <td>No log</td>\n      <td>0.691183</td>\n      <td>0.657605</td>\n      <td>0.638970</td>\n      <td>0.608852</td>\n      <td>0.639578</td>\n      <td>0.609570</td>\n      <td>0.535268</td>\n      <td>0.552373</td>\n      <td>0.691183</td>\n      <td>0.657605</td>\n    </tr>\n    <tr>\n      <td>11232</td>\n      <td>0.002400</td>\n      <td>No log</td>\n      <td>0.701821</td>\n      <td>0.666526</td>\n      <td>0.638133</td>\n      <td>0.608002</td>\n      <td>0.638828</td>\n      <td>0.609521</td>\n      <td>0.535843</td>\n      <td>0.563896</td>\n      <td>0.701821</td>\n      <td>0.666526</td>\n    </tr>\n    <tr>\n      <td>11520</td>\n      <td>0.002300</td>\n      <td>No log</td>\n      <td>0.699925</td>\n      <td>0.666259</td>\n      <td>0.642017</td>\n      <td>0.612357</td>\n      <td>0.642566</td>\n      <td>0.614152</td>\n      <td>0.527153</td>\n      <td>0.558587</td>\n      <td>0.699925</td>\n      <td>0.666259</td>\n    </tr>\n    <tr>\n      <td>11808</td>\n      <td>0.002300</td>\n      <td>No log</td>\n      <td>0.705875</td>\n      <td>0.673414</td>\n      <td>0.643500</td>\n      <td>0.616473</td>\n      <td>0.644000</td>\n      <td>0.618168</td>\n      <td>0.549704</td>\n      <td>0.573058</td>\n      <td>0.705875</td>\n      <td>0.673414</td>\n    </tr>\n    <tr>\n      <td>12000</td>\n      <td>0.002100</td>\n      <td>No log</td>\n      <td>0.703067</td>\n      <td>0.663349</td>\n      <td>0.639785</td>\n      <td>0.607716</td>\n      <td>0.640896</td>\n      <td>0.609784</td>\n      <td>0.537621</td>\n      <td>0.565632</td>\n      <td>0.703067</td>\n      <td>0.663349</td>\n    </tr>\n    <tr>\n      <td>12096</td>\n      <td>0.002100</td>\n      <td>No log</td>\n      <td>0.701562</td>\n      <td>0.666655</td>\n      <td>0.640139</td>\n      <td>0.611618</td>\n      <td>0.641406</td>\n      <td>0.614198</td>\n      <td>0.542641</td>\n      <td>0.564282</td>\n      <td>0.701562</td>\n      <td>0.666655</td>\n    </tr>\n    <tr>\n      <td>12384</td>\n      <td>0.002100</td>\n      <td>No log</td>\n      <td>0.699528</td>\n      <td>0.667892</td>\n      <td>0.644916</td>\n      <td>0.618258</td>\n      <td>0.645703</td>\n      <td>0.619833</td>\n      <td>0.527984</td>\n      <td>0.553644</td>\n      <td>0.699528</td>\n      <td>0.667892</td>\n    </tr>\n    <tr>\n      <td>12672</td>\n      <td>0.002000</td>\n      <td>No log</td>\n      <td>0.706445</td>\n      <td>0.670107</td>\n      <td>0.642894</td>\n      <td>0.611799</td>\n      <td>0.643621</td>\n      <td>0.613753</td>\n      <td>0.543308</td>\n      <td>0.573970</td>\n      <td>0.706445</td>\n      <td>0.670107</td>\n    </tr>\n    <tr>\n      <td>12960</td>\n      <td>0.002000</td>\n      <td>No log</td>\n      <td>0.699184</td>\n      <td>0.665048</td>\n      <td>0.641198</td>\n      <td>0.611766</td>\n      <td>0.642321</td>\n      <td>0.614280</td>\n      <td>0.530198</td>\n      <td>0.558834</td>\n      <td>0.699184</td>\n      <td>0.665048</td>\n    </tr>\n    <tr>\n      <td>13000</td>\n      <td>0.001900</td>\n      <td>No log</td>\n      <td>0.700913</td>\n      <td>0.667955</td>\n      <td>0.644792</td>\n      <td>0.616601</td>\n      <td>0.646171</td>\n      <td>0.618791</td>\n      <td>0.526705</td>\n      <td>0.554414</td>\n      <td>0.700913</td>\n      <td>0.667955</td>\n    </tr>\n    <tr>\n      <td>13248</td>\n      <td>0.001900</td>\n      <td>No log</td>\n      <td>0.696948</td>\n      <td>0.663143</td>\n      <td>0.640371</td>\n      <td>0.611158</td>\n      <td>0.641587</td>\n      <td>0.613115</td>\n      <td>0.527811</td>\n      <td>0.559064</td>\n      <td>0.696948</td>\n      <td>0.663143</td>\n    </tr>\n    <tr>\n      <td>13536</td>\n      <td>0.001800</td>\n      <td>No log</td>\n      <td>0.696804</td>\n      <td>0.664285</td>\n      <td>0.644724</td>\n      <td>0.620151</td>\n      <td>0.645584</td>\n      <td>0.621025</td>\n      <td>0.526488</td>\n      <td>0.556075</td>\n      <td>0.696804</td>\n      <td>0.664285</td>\n    </tr>\n    <tr>\n      <td>13824</td>\n      <td>0.001800</td>\n      <td>No log</td>\n      <td>0.696185</td>\n      <td>0.663099</td>\n      <td>0.638397</td>\n      <td>0.610793</td>\n      <td>0.639220</td>\n      <td>0.612208</td>\n      <td>0.528035</td>\n      <td>0.558043</td>\n      <td>0.696185</td>\n      <td>0.663099</td>\n    </tr>\n    <tr>\n      <td>14000</td>\n      <td>0.001700</td>\n      <td>No log</td>\n      <td>0.699299</td>\n      <td>0.664777</td>\n      <td>0.639417</td>\n      <td>0.609772</td>\n      <td>0.640324</td>\n      <td>0.612126</td>\n      <td>0.529399</td>\n      <td>0.560132</td>\n      <td>0.699299</td>\n      <td>0.664777</td>\n    </tr>\n    <tr>\n      <td>14112</td>\n      <td>0.001700</td>\n      <td>No log</td>\n      <td>0.696544</td>\n      <td>0.664766</td>\n      <td>0.638135</td>\n      <td>0.611847</td>\n      <td>0.639116</td>\n      <td>0.613631</td>\n      <td>0.529037</td>\n      <td>0.560623</td>\n      <td>0.696544</td>\n      <td>0.664766</td>\n    </tr>\n    <tr>\n      <td>14400</td>\n      <td>0.001700</td>\n      <td>No log</td>\n      <td>0.692360</td>\n      <td>0.661940</td>\n      <td>0.636405</td>\n      <td>0.610894</td>\n      <td>0.637666</td>\n      <td>0.613188</td>\n      <td>0.524517</td>\n      <td>0.549108</td>\n      <td>0.692360</td>\n      <td>0.661940</td>\n    </tr>\n    <tr>\n      <td>14688</td>\n      <td>0.001700</td>\n      <td>No log</td>\n      <td>0.694890</td>\n      <td>0.663259</td>\n      <td>0.640162</td>\n      <td>0.613740</td>\n      <td>0.641097</td>\n      <td>0.615108</td>\n      <td>0.524649</td>\n      <td>0.549434</td>\n      <td>0.694890</td>\n      <td>0.663259</td>\n    </tr>\n    <tr>\n      <td>14976</td>\n      <td>0.001700</td>\n      <td>No log</td>\n      <td>0.693598</td>\n      <td>0.662199</td>\n      <td>0.638488</td>\n      <td>0.614089</td>\n      <td>0.639539</td>\n      <td>0.615423</td>\n      <td>0.520781</td>\n      <td>0.549906</td>\n      <td>0.693598</td>\n      <td>0.662199</td>\n    </tr>\n    <tr>\n      <td>15000</td>\n      <td>0.001600</td>\n      <td>No log</td>\n      <td>0.691893</td>\n      <td>0.661165</td>\n      <td>0.639810</td>\n      <td>0.614635</td>\n      <td>0.640778</td>\n      <td>0.616911</td>\n      <td>0.517936</td>\n      <td>0.548946</td>\n      <td>0.691893</td>\n      <td>0.661165</td>\n    </tr>\n    <tr>\n      <td>15264</td>\n      <td>0.001600</td>\n      <td>No log</td>\n      <td>0.700500</td>\n      <td>0.666963</td>\n      <td>0.640325</td>\n      <td>0.612954</td>\n      <td>0.641407</td>\n      <td>0.614921</td>\n      <td>0.510754</td>\n      <td>0.549968</td>\n      <td>0.700500</td>\n      <td>0.666963</td>\n    </tr>\n    <tr>\n      <td>15552</td>\n      <td>0.001500</td>\n      <td>No log</td>\n      <td>0.694156</td>\n      <td>0.661767</td>\n      <td>0.635403</td>\n      <td>0.611578</td>\n      <td>0.636208</td>\n      <td>0.612906</td>\n      <td>0.517335</td>\n      <td>0.552012</td>\n      <td>0.694156</td>\n      <td>0.661767</td>\n    </tr>\n    <tr>\n      <td>15840</td>\n      <td>0.001500</td>\n      <td>No log</td>\n      <td>0.696841</td>\n      <td>0.664102</td>\n      <td>0.636851</td>\n      <td>0.609727</td>\n      <td>0.638167</td>\n      <td>0.612651</td>\n      <td>0.505800</td>\n      <td>0.545446</td>\n      <td>0.696841</td>\n      <td>0.664102</td>\n    </tr>\n    <tr>\n      <td>16000</td>\n      <td>0.001500</td>\n      <td>No log</td>\n      <td>0.695172</td>\n      <td>0.661716</td>\n      <td>0.632575</td>\n      <td>0.605140</td>\n      <td>0.633279</td>\n      <td>0.607190</td>\n      <td>0.496667</td>\n      <td>0.540893</td>\n      <td>0.695172</td>\n      <td>0.661716</td>\n    </tr>\n    <tr>\n      <td>16128</td>\n      <td>0.001500</td>\n      <td>No log</td>\n      <td>0.701233</td>\n      <td>0.666915</td>\n      <td>0.637775</td>\n      <td>0.611842</td>\n      <td>0.638584</td>\n      <td>0.614164</td>\n      <td>0.518395</td>\n      <td>0.555788</td>\n      <td>0.701233</td>\n      <td>0.666915</td>\n    </tr>\n    <tr>\n      <td>16416</td>\n      <td>0.001500</td>\n      <td>No log</td>\n      <td>0.697525</td>\n      <td>0.664506</td>\n      <td>0.637059</td>\n      <td>0.611533</td>\n      <td>0.637550</td>\n      <td>0.611751</td>\n      <td>0.522522</td>\n      <td>0.553738</td>\n      <td>0.697525</td>\n      <td>0.664506</td>\n    </tr>\n    <tr>\n      <td>16704</td>\n      <td>0.001400</td>\n      <td>No log</td>\n      <td>0.697525</td>\n      <td>0.664207</td>\n      <td>0.636721</td>\n      <td>0.612602</td>\n      <td>0.637637</td>\n      <td>0.614218</td>\n      <td>0.516872</td>\n      <td>0.551454</td>\n      <td>0.697525</td>\n      <td>0.664207</td>\n    </tr>\n    <tr>\n      <td>16992</td>\n      <td>0.001400</td>\n      <td>No log</td>\n      <td>0.691597</td>\n      <td>0.657882</td>\n      <td>0.628236</td>\n      <td>0.602854</td>\n      <td>0.629437</td>\n      <td>0.604377</td>\n      <td>0.502297</td>\n      <td>0.537032</td>\n      <td>0.691597</td>\n      <td>0.657882</td>\n    </tr>\n    <tr>\n      <td>17000</td>\n      <td>0.001300</td>\n      <td>No log</td>\n      <td>0.693170</td>\n      <td>0.659165</td>\n      <td>0.628587</td>\n      <td>0.603227</td>\n      <td>0.629753</td>\n      <td>0.605348</td>\n      <td>0.508305</td>\n      <td>0.541441</td>\n      <td>0.693170</td>\n      <td>0.659165</td>\n    </tr>\n    <tr>\n      <td>17280</td>\n      <td>0.001300</td>\n      <td>No log</td>\n      <td>0.693021</td>\n      <td>0.658939</td>\n      <td>0.635450</td>\n      <td>0.610874</td>\n      <td>0.636532</td>\n      <td>0.611814</td>\n      <td>0.506399</td>\n      <td>0.539073</td>\n      <td>0.693021</td>\n      <td>0.658939</td>\n    </tr>\n    <tr>\n      <td>17568</td>\n      <td>0.001400</td>\n      <td>No log</td>\n      <td>0.702463</td>\n      <td>0.668463</td>\n      <td>0.638932</td>\n      <td>0.612535</td>\n      <td>0.640258</td>\n      <td>0.614420</td>\n      <td>0.519697</td>\n      <td>0.556460</td>\n      <td>0.702463</td>\n      <td>0.668463</td>\n    </tr>\n    <tr>\n      <td>17856</td>\n      <td>0.001400</td>\n      <td>No log</td>\n      <td>0.701762</td>\n      <td>0.667284</td>\n      <td>0.639309</td>\n      <td>0.612110</td>\n      <td>0.640013</td>\n      <td>0.613701</td>\n      <td>0.514160</td>\n      <td>0.550262</td>\n      <td>0.701762</td>\n      <td>0.667284</td>\n    </tr>\n    <tr>\n      <td>18000</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.700318</td>\n      <td>0.666910</td>\n      <td>0.639170</td>\n      <td>0.612258</td>\n      <td>0.640277</td>\n      <td>0.614358</td>\n      <td>0.511612</td>\n      <td>0.551935</td>\n      <td>0.700318</td>\n      <td>0.666910</td>\n    </tr>\n    <tr>\n      <td>18144</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.697852</td>\n      <td>0.666509</td>\n      <td>0.639821</td>\n      <td>0.614021</td>\n      <td>0.640760</td>\n      <td>0.615690</td>\n      <td>0.504519</td>\n      <td>0.546302</td>\n      <td>0.697852</td>\n      <td>0.666509</td>\n    </tr>\n    <tr>\n      <td>18432</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.695399</td>\n      <td>0.662616</td>\n      <td>0.637791</td>\n      <td>0.611909</td>\n      <td>0.638708</td>\n      <td>0.613529</td>\n      <td>0.502626</td>\n      <td>0.543055</td>\n      <td>0.695399</td>\n      <td>0.662616</td>\n    </tr>\n    <tr>\n      <td>18720</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.693878</td>\n      <td>0.661851</td>\n      <td>0.633939</td>\n      <td>0.608435</td>\n      <td>0.634824</td>\n      <td>0.610406</td>\n      <td>0.499822</td>\n      <td>0.538955</td>\n      <td>0.693878</td>\n      <td>0.661851</td>\n    </tr>\n    <tr>\n      <td>19000</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.697158</td>\n      <td>0.664268</td>\n      <td>0.635439</td>\n      <td>0.611213</td>\n      <td>0.636044</td>\n      <td>0.613028</td>\n      <td>0.502740</td>\n      <td>0.541154</td>\n      <td>0.697158</td>\n      <td>0.664268</td>\n    </tr>\n    <tr>\n      <td>19008</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.697428</td>\n      <td>0.665064</td>\n      <td>0.635962</td>\n      <td>0.611796</td>\n      <td>0.636509</td>\n      <td>0.613282</td>\n      <td>0.503311</td>\n      <td>0.542375</td>\n      <td>0.697428</td>\n      <td>0.665064</td>\n    </tr>\n    <tr>\n      <td>19296</td>\n      <td>0.001200</td>\n      <td>No log</td>\n      <td>0.697176</td>\n      <td>0.662807</td>\n      <td>0.634620</td>\n      <td>0.610642</td>\n      <td>0.635436</td>\n      <td>0.612396</td>\n      <td>0.507281</td>\n      <td>0.545775</td>\n      <td>0.697176</td>\n      <td>0.662807</td>\n    </tr>\n    <tr>\n      <td>19584</td>\n      <td>0.001100</td>\n      <td>No log</td>\n      <td>0.700167</td>\n      <td>0.665758</td>\n      <td>0.636019</td>\n      <td>0.611913</td>\n      <td>0.636500</td>\n      <td>0.613749</td>\n      <td>0.502768</td>\n      <td>0.546323</td>\n      <td>0.700167</td>\n      <td>0.665758</td>\n    </tr>\n    <tr>\n      <td>19872</td>\n      <td>0.001100</td>\n      <td>No log</td>\n      <td>0.695928</td>\n      <td>0.661454</td>\n      <td>0.636767</td>\n      <td>0.612295</td>\n      <td>0.637414</td>\n      <td>0.613619</td>\n      <td>0.501059</td>\n      <td>0.539088</td>\n      <td>0.695928</td>\n      <td>0.661454</td>\n    </tr>\n    <tr>\n      <td>20000</td>\n      <td>0.001100</td>\n      <td>No log</td>\n      <td>0.696916</td>\n      <td>0.662697</td>\n      <td>0.637556</td>\n      <td>0.612374</td>\n      <td>0.638139</td>\n      <td>0.613138</td>\n      <td>0.503864</td>\n      <td>0.543854</td>\n      <td>0.696916</td>\n      <td>0.662697</td>\n    </tr>\n    <tr>\n      <td>20160</td>\n      <td>0.001100</td>\n      <td>No log</td>\n      <td>0.700221</td>\n      <td>0.665708</td>\n      <td>0.635403</td>\n      <td>0.609941</td>\n      <td>0.636264</td>\n      <td>0.611345</td>\n      <td>0.501990</td>\n      <td>0.546020</td>\n      <td>0.700221</td>\n      <td>0.665708</td>\n    </tr>\n    <tr>\n      <td>20448</td>\n      <td>0.001100</td>\n      <td>No log</td>\n      <td>0.698481</td>\n      <td>0.666258</td>\n      <td>0.634571</td>\n      <td>0.607655</td>\n      <td>0.635681</td>\n      <td>0.610116</td>\n      <td>0.495325</td>\n      <td>0.537692</td>\n      <td>0.698481</td>\n      <td>0.666258</td>\n    </tr>\n    <tr>\n      <td>20736</td>\n      <td>0.001100</td>\n      <td>No log</td>\n      <td>0.697830</td>\n      <td>0.663391</td>\n      <td>0.633312</td>\n      <td>0.607312</td>\n      <td>0.634243</td>\n      <td>0.609150</td>\n      <td>0.491470</td>\n      <td>0.536988</td>\n      <td>0.697830</td>\n      <td>0.663391</td>\n    </tr>\n    <tr>\n      <td>21000</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.698677</td>\n      <td>0.664852</td>\n      <td>0.635090</td>\n      <td>0.609831</td>\n      <td>0.635868</td>\n      <td>0.611365</td>\n      <td>0.503538</td>\n      <td>0.544461</td>\n      <td>0.698677</td>\n      <td>0.664852</td>\n    </tr>\n    <tr>\n      <td>21024</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.697158</td>\n      <td>0.663156</td>\n      <td>0.634728</td>\n      <td>0.609400</td>\n      <td>0.635568</td>\n      <td>0.611041</td>\n      <td>0.502429</td>\n      <td>0.541993</td>\n      <td>0.697158</td>\n      <td>0.663156</td>\n    </tr>\n    <tr>\n      <td>21312</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.700810</td>\n      <td>0.665789</td>\n      <td>0.637208</td>\n      <td>0.610709</td>\n      <td>0.638003</td>\n      <td>0.612283</td>\n      <td>0.505921</td>\n      <td>0.547819</td>\n      <td>0.700810</td>\n      <td>0.665789</td>\n    </tr>\n    <tr>\n      <td>21600</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.698299</td>\n      <td>0.663937</td>\n      <td>0.634429</td>\n      <td>0.609591</td>\n      <td>0.635617</td>\n      <td>0.611294</td>\n      <td>0.497863</td>\n      <td>0.540984</td>\n      <td>0.698299</td>\n      <td>0.663937</td>\n    </tr>\n    <tr>\n      <td>21888</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.695640</td>\n      <td>0.660052</td>\n      <td>0.634649</td>\n      <td>0.609289</td>\n      <td>0.635875</td>\n      <td>0.611374</td>\n      <td>0.493414</td>\n      <td>0.536364</td>\n      <td>0.695640</td>\n      <td>0.660052</td>\n    </tr>\n    <tr>\n      <td>22000</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.697823</td>\n      <td>0.662337</td>\n      <td>0.633751</td>\n      <td>0.609387</td>\n      <td>0.634871</td>\n      <td>0.611306</td>\n      <td>0.488881</td>\n      <td>0.533959</td>\n      <td>0.697823</td>\n      <td>0.662337</td>\n    </tr>\n    <tr>\n      <td>22176</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.696422</td>\n      <td>0.660698</td>\n      <td>0.633896</td>\n      <td>0.607908</td>\n      <td>0.634693</td>\n      <td>0.609479</td>\n      <td>0.490298</td>\n      <td>0.535108</td>\n      <td>0.696422</td>\n      <td>0.660698</td>\n    </tr>\n    <tr>\n      <td>22464</td>\n      <td>0.001000</td>\n      <td>No log</td>\n      <td>0.695336</td>\n      <td>0.661315</td>\n      <td>0.636168</td>\n      <td>0.608516</td>\n      <td>0.636791</td>\n      <td>0.610398</td>\n      <td>0.491898</td>\n      <td>0.533048</td>\n      <td>0.695336</td>\n      <td>0.661315</td>\n    </tr>\n    <tr>\n      <td>22752</td>\n      <td>0.000900</td>\n      <td>No log</td>\n      <td>0.695877</td>\n      <td>0.661310</td>\n      <td>0.635495</td>\n      <td>0.609534</td>\n      <td>0.636222</td>\n      <td>0.611456</td>\n      <td>0.494876</td>\n      <td>0.534655</td>\n      <td>0.695877</td>\n      <td>0.661310</td>\n    </tr>\n    <tr>\n      <td>23000</td>\n      <td>0.000900</td>\n      <td>No log</td>\n      <td>0.696311</td>\n      <td>0.661536</td>\n      <td>0.635614</td>\n      <td>0.608143</td>\n      <td>0.636253</td>\n      <td>0.610884</td>\n      <td>0.494101</td>\n      <td>0.535650</td>\n      <td>0.696311</td>\n      <td>0.661536</td>\n    </tr>\n    <tr>\n      <td>23040</td>\n      <td>0.000900</td>\n      <td>No log</td>\n      <td>0.695721</td>\n      <td>0.661460</td>\n      <td>0.634550</td>\n      <td>0.607742</td>\n      <td>0.635248</td>\n      <td>0.609118</td>\n      <td>0.492812</td>\n      <td>0.534552</td>\n      <td>0.695721</td>\n      <td>0.661460</td>\n    </tr>\n    <tr>\n      <td>23328</td>\n      <td>0.000900</td>\n      <td>No log</td>\n      <td>0.696000</td>\n      <td>0.661746</td>\n      <td>0.633617</td>\n      <td>0.607251</td>\n      <td>0.634539</td>\n      <td>0.608974</td>\n      <td>0.491768</td>\n      <td>0.534966</td>\n      <td>0.696000</td>\n      <td>0.661746</td>\n    </tr>\n    <tr>\n      <td>23616</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696309</td>\n      <td>0.660439</td>\n      <td>0.632456</td>\n      <td>0.606115</td>\n      <td>0.633431</td>\n      <td>0.607778</td>\n      <td>0.491442</td>\n      <td>0.534334</td>\n      <td>0.696309</td>\n      <td>0.660439</td>\n    </tr>\n    <tr>\n      <td>23904</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696122</td>\n      <td>0.660471</td>\n      <td>0.633164</td>\n      <td>0.606515</td>\n      <td>0.634185</td>\n      <td>0.609381</td>\n      <td>0.493944</td>\n      <td>0.535865</td>\n      <td>0.696122</td>\n      <td>0.660471</td>\n    </tr>\n    <tr>\n      <td>24000</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.694968</td>\n      <td>0.660186</td>\n      <td>0.633762</td>\n      <td>0.606180</td>\n      <td>0.634699</td>\n      <td>0.609069</td>\n      <td>0.490992</td>\n      <td>0.534285</td>\n      <td>0.694968</td>\n      <td>0.660186</td>\n    </tr>\n    <tr>\n      <td>24192</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.697113</td>\n      <td>0.662760</td>\n      <td>0.633843</td>\n      <td>0.607576</td>\n      <td>0.634814</td>\n      <td>0.609551</td>\n      <td>0.494144</td>\n      <td>0.537603</td>\n      <td>0.697113</td>\n      <td>0.662760</td>\n    </tr>\n    <tr>\n      <td>24480</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696518</td>\n      <td>0.660308</td>\n      <td>0.632504</td>\n      <td>0.605448</td>\n      <td>0.633231</td>\n      <td>0.606642</td>\n      <td>0.487430</td>\n      <td>0.530240</td>\n      <td>0.696518</td>\n      <td>0.660308</td>\n    </tr>\n    <tr>\n      <td>24768</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.695009</td>\n      <td>0.660203</td>\n      <td>0.633429</td>\n      <td>0.606513</td>\n      <td>0.634460</td>\n      <td>0.607849</td>\n      <td>0.486963</td>\n      <td>0.529326</td>\n      <td>0.695009</td>\n      <td>0.660203</td>\n    </tr>\n    <tr>\n      <td>25000</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.694040</td>\n      <td>0.659240</td>\n      <td>0.631979</td>\n      <td>0.605494</td>\n      <td>0.633088</td>\n      <td>0.607534</td>\n      <td>0.484892</td>\n      <td>0.528277</td>\n      <td>0.694040</td>\n      <td>0.659240</td>\n    </tr>\n    <tr>\n      <td>25056</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.695839</td>\n      <td>0.661073</td>\n      <td>0.632343</td>\n      <td>0.606568</td>\n      <td>0.633372</td>\n      <td>0.608044</td>\n      <td>0.485997</td>\n      <td>0.528843</td>\n      <td>0.695839</td>\n      <td>0.661073</td>\n    </tr>\n    <tr>\n      <td>25344</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.694964</td>\n      <td>0.661164</td>\n      <td>0.632196</td>\n      <td>0.606852</td>\n      <td>0.633076</td>\n      <td>0.607756</td>\n      <td>0.488733</td>\n      <td>0.531925</td>\n      <td>0.694964</td>\n      <td>0.661164</td>\n    </tr>\n    <tr>\n      <td>25632</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696130</td>\n      <td>0.660749</td>\n      <td>0.631619</td>\n      <td>0.606428</td>\n      <td>0.632457</td>\n      <td>0.607495</td>\n      <td>0.485730</td>\n      <td>0.530426</td>\n      <td>0.696130</td>\n      <td>0.660749</td>\n    </tr>\n    <tr>\n      <td>25920</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.695486</td>\n      <td>0.659777</td>\n      <td>0.634014</td>\n      <td>0.607698</td>\n      <td>0.634861</td>\n      <td>0.608839</td>\n      <td>0.486753</td>\n      <td>0.528370</td>\n      <td>0.695486</td>\n      <td>0.659777</td>\n    </tr>\n    <tr>\n      <td>26000</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696782</td>\n      <td>0.660680</td>\n      <td>0.632971</td>\n      <td>0.606514</td>\n      <td>0.633933</td>\n      <td>0.608338</td>\n      <td>0.486386</td>\n      <td>0.530307</td>\n      <td>0.696782</td>\n      <td>0.660680</td>\n    </tr>\n    <tr>\n      <td>26208</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696690</td>\n      <td>0.661505</td>\n      <td>0.633463</td>\n      <td>0.607776</td>\n      <td>0.634347</td>\n      <td>0.609542</td>\n      <td>0.484071</td>\n      <td>0.529305</td>\n      <td>0.696690</td>\n      <td>0.661505</td>\n    </tr>\n    <tr>\n      <td>26496</td>\n      <td>0.000800</td>\n      <td>No log</td>\n      <td>0.696562</td>\n      <td>0.661518</td>\n      <td>0.633505</td>\n      <td>0.607406</td>\n      <td>0.634429</td>\n      <td>0.609406</td>\n      <td>0.486048</td>\n      <td>0.530594</td>\n      <td>0.696562</td>\n      <td>0.661518</td>\n    </tr>\n    <tr>\n      <td>26784</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.696105</td>\n      <td>0.660929</td>\n      <td>0.633743</td>\n      <td>0.607990</td>\n      <td>0.634660</td>\n      <td>0.609025</td>\n      <td>0.485589</td>\n      <td>0.528959</td>\n      <td>0.696105</td>\n      <td>0.660929</td>\n    </tr>\n    <tr>\n      <td>27000</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.695539</td>\n      <td>0.660727</td>\n      <td>0.632420</td>\n      <td>0.606721</td>\n      <td>0.633319</td>\n      <td>0.607857</td>\n      <td>0.483661</td>\n      <td>0.528919</td>\n      <td>0.695539</td>\n      <td>0.660727</td>\n    </tr>\n    <tr>\n      <td>27072</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.696344</td>\n      <td>0.661197</td>\n      <td>0.632600</td>\n      <td>0.607151</td>\n      <td>0.633424</td>\n      <td>0.608239</td>\n      <td>0.485957</td>\n      <td>0.531246</td>\n      <td>0.696344</td>\n      <td>0.661197</td>\n    </tr>\n    <tr>\n      <td>27360</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.697089</td>\n      <td>0.662385</td>\n      <td>0.632868</td>\n      <td>0.607601</td>\n      <td>0.633640</td>\n      <td>0.608581</td>\n      <td>0.484710</td>\n      <td>0.530977</td>\n      <td>0.697089</td>\n      <td>0.662385</td>\n    </tr>\n    <tr>\n      <td>27648</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.697272</td>\n      <td>0.662738</td>\n      <td>0.632975</td>\n      <td>0.607800</td>\n      <td>0.633694</td>\n      <td>0.608744</td>\n      <td>0.483656</td>\n      <td>0.529242</td>\n      <td>0.697272</td>\n      <td>0.662738</td>\n    </tr>\n    <tr>\n      <td>27936</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.696611</td>\n      <td>0.661761</td>\n      <td>0.632881</td>\n      <td>0.607570</td>\n      <td>0.633632</td>\n      <td>0.608894</td>\n      <td>0.481992</td>\n      <td>0.528166</td>\n      <td>0.696611</td>\n      <td>0.661761</td>\n    </tr>\n    <tr>\n      <td>28000</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.697068</td>\n      <td>0.661860</td>\n      <td>0.633173</td>\n      <td>0.608027</td>\n      <td>0.633932</td>\n      <td>0.609035</td>\n      <td>0.482986</td>\n      <td>0.529354</td>\n      <td>0.697068</td>\n      <td>0.661860</td>\n    </tr>\n    <tr>\n      <td>28224</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.696944</td>\n      <td>0.662103</td>\n      <td>0.633136</td>\n      <td>0.607639</td>\n      <td>0.633896</td>\n      <td>0.608923</td>\n      <td>0.483817</td>\n      <td>0.529488</td>\n      <td>0.696944</td>\n      <td>0.662103</td>\n    </tr>\n    <tr>\n      <td>28512</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.697145</td>\n      <td>0.662290</td>\n      <td>0.633202</td>\n      <td>0.607846</td>\n      <td>0.633976</td>\n      <td>0.609022</td>\n      <td>0.484831</td>\n      <td>0.530640</td>\n      <td>0.697145</td>\n      <td>0.662290</td>\n    </tr>\n    <tr>\n      <td>28800</td>\n      <td>0.000700</td>\n      <td>No log</td>\n      <td>0.697139</td>\n      <td>0.662315</td>\n      <td>0.633208</td>\n      <td>0.607865</td>\n      <td>0.633982</td>\n      <td>0.609007</td>\n      <td>0.484827</td>\n      <td>0.530643</td>\n      <td>0.697139</td>\n      <td>0.662315</td>\n    </tr>\n  </tbody>\n</table><p>"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}}]},{"cell_type":"code","source":"sentences_2 = [\n    \"सरकारले कपास विकास समिति खारेज गर्ने निर्णय गरेको सुनेर मलाई दुःख लाग्यो। नेपालमा कपास खेतीको राम्रो सम्भावना र बजार दुवै छ। यसको उत्पादन त हामीले बाउ-बाजेका पालादेखि नै गर्दै आएका हौं। र अहिले पनि धेरै किसानले आफ्नो प्रयोगका लागि पनि कपास खेती गर्दै आएका छन्।व्यावसायिक रूपमा सुरु गरिएको कपास खेती सरकारको गलत नीतिका कारण आज बन्द हुने अवस्थामा पुगेको हो। समिति खारेज भएपछि कपास उत्पादनका लागि २०३३ सालदेखि गरिएका सबै प्रयास खेर गए। मैले कृषि प्राविधिकको रूपमा आफ्नो जागिरे जीवन सुरु गरेर १५-१६ वर्ष कपास खेतीकै क्षेत्रमा बिताए। पछि कृषि सचिव भएर पनि एक वर्षभन्दा बढी काम गरें।\",\n    \"पार्टीको जिल्ला नेतृत्वले पार्टी सुधारको मागलाई बेवास्ता गरेको भन्दै नेकपा (एमाले) सिद्धार्थनगर नगर कमिटीका सचिवसहित ७४ जनाले सामूहिक राजीनामा दिएका छन् । सोमबार भैरहवामा पत्रकार सम्मेलन गरी नगर सचिव नारायणप्रसाद भण्डारीसहित नगर कमिटी र विभिन्न जनवर्गीय संगठनका पदाधिकारीले राजीनामा दिएको घोषणा गरेका हुन् । पत्रकार सम्मेलनमा बोल्दै भण्डारीले एक महिनाअघि पार्टीमा गर्नुपर्ने सुधारको माग राख्दै नेतृत्वलाई १० बुँदे मागसहित सुझाव पत्र पेस गरिएको तर जिल्ला नेतृत्वले त्यसलाई बेवास्ता गरी उल्टै व्यक्तिगत लाञ्छना र कारबाहीको धम्की दिंदै गुटगत सोचले अघि बढेपछि राजीनामा दिनुपरेको बताए ।\"\n]\n\nembeddings_2 =model.encode(sentences_2)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T11:25:35.767823Z","iopub.execute_input":"2024-06-07T11:25:35.768471Z","iopub.status.idle":"2024-06-07T11:25:35.821147Z","shell.execute_reply.started":"2024-06-07T11:25:35.768437Z","shell.execute_reply":"2024-06-07T11:25:35.820146Z"},"trusted":true},"execution_count":16,"outputs":[{"output_type":"display_data","data":{"text/plain":"Batches:   0%|          | 0/1 [00:00<?, ?it/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"5d89fa50506e43c18fbc9d751acb399b"}},"metadata":{}}]},{"cell_type":"code","source":"from sklearn.metrics.pairwise import cosine_similarity\n\ncos_sim_2 = cosine_similarity(\n    [embeddings_2[1]],\n    [embeddings_2[1]]\n)\n\ncos_sim_2","metadata":{"execution":{"iopub.status.busy":"2024-06-07T11:25:39.597619Z","iopub.execute_input":"2024-06-07T11:25:39.598357Z","iopub.status.idle":"2024-06-07T11:25:39.607759Z","shell.execute_reply.started":"2024-06-07T11:25:39.598324Z","shell.execute_reply":"2024-06-07T11:25:39.606801Z"},"trusted":true},"execution_count":17,"outputs":[{"execution_count":17,"output_type":"execute_result","data":{"text/plain":"array([[1.]], dtype=float32)"},"metadata":{}}]},{"cell_type":"code","source":"!pip install huggingface_hub","metadata":{"execution":{"iopub.status.busy":"2024-06-07T11:26:49.060418Z","iopub.execute_input":"2024-06-07T11:26:49.061297Z","iopub.status.idle":"2024-06-07T11:27:01.222925Z","shell.execute_reply.started":"2024-06-07T11:26:49.061265Z","shell.execute_reply":"2024-06-07T11:27:01.221473Z"},"trusted":true},"execution_count":18,"outputs":[{"name":"stderr","text":"/opt/conda/lib/python3.10/pty.py:89: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock.\n  pid, fd = os.forkpty()\nhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n\t- Avoid using `tokenizers` before the fork if possible\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n","output_type":"stream"},{"name":"stdout","text":"Requirement already satisfied: huggingface_hub in /opt/conda/lib/python3.10/site-packages (0.23.2)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (3.13.1)\nRequirement already satisfied: fsspec>=2023.5.0 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (2024.3.1)\nRequirement already satisfied: packaging>=20.9 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (21.3)\nRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (6.0.1)\nRequirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (2.32.3)\nRequirement already satisfied: tqdm>=4.42.1 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (4.66.4)\nRequirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface_hub) (4.9.0)\nRequirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging>=20.9->huggingface_hub) (3.1.1)\nRequirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (3.3.2)\nRequirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (3.6)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (1.26.18)\nRequirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->huggingface_hub) (2024.2.2)\n","output_type":"stream"}]},{"cell_type":"code","source":"from huggingface_hub import login\naccess_token_write = \"your_access_token\"\nlogin(token = access_token_write)","metadata":{"execution":{"iopub.status.busy":"2024-06-07T11:44:14.319201Z","iopub.execute_input":"2024-06-07T11:44:14.320104Z","iopub.status.idle":"2024-06-07T11:44:14.452357Z","shell.execute_reply.started":"2024-06-07T11:44:14.320068Z","shell.execute_reply":"2024-06-07T11:44:14.451221Z"},"trusted":true},"execution_count":23,"outputs":[{"name":"stdout","text":"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\nToken is valid (permission: write).\nYour token has been saved to /root/.cache/huggingface/token\nLogin successful\n","output_type":"stream"}]},{"cell_type":"code","source":"model.push_to_hub('syubraj/sentenceTransformer_nepali_new')","metadata":{"execution":{"iopub.status.busy":"2024-06-07T11:46:05.763911Z","iopub.execute_input":"2024-06-07T11:46:05.764314Z","iopub.status.idle":"2024-06-07T11:46:20.686005Z","shell.execute_reply.started":"2024-06-07T11:46:05.764284Z","shell.execute_reply":"2024-06-07T11:46:20.684999Z"},"trusted":true},"execution_count":25,"outputs":[{"output_type":"display_data","data":{"text/plain":"Computing widget examples:   0%|          | 0/5 [00:00<?, ?example/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":""}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":"model.safetensors:   0%|          | 0.00/328M [00:00<?, ?B/s]","application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"8be57079d7ff44ca9593c3a71fcef992"}},"metadata":{}},{"execution_count":25,"output_type":"execute_result","data":{"text/plain":"'https://huggingface.co/syubraj/sentenceTransformer_nepali_new/commit/70099c0437a80b82a5644295e3a327e1558fbeca'"},"metadata":{}}]},{"cell_type":"code","source":"","metadata":{},"execution_count":null,"outputs":[]}]}