taesiri's picture
using fastapi
7e8de53
raw
history blame
7.34 kB
import os
import re
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
import gradio as gr
import requests
import arxiv
from arxiv_latex_extractor import get_paper_content
import requests
from coreservice import app
from fastapi.staticfiles import StaticFiles
LEADING_PROMPT = "Read the following paper:"
def replace_texttt(text):
return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text)
def get_paper_info(paper_id):
# Create a search query with the arXiv ID
search = arxiv.Search(id_list=[paper_id])
# Fetch the paper using its arXiv ID
paper = next(search.results(), None)
if paper is not None:
# Return the paper's title and abstract
return paper.title, paper.summary
else:
return None, None
def get_paper_from_huggingface(paper_id):
try:
url = f"https://huggingface.co/datasets/taesiri/arxiv_db/raw/main/papers/{paper_id}.tex"
response = requests.get(url)
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
return response.text
except Exception as e:
return None
class ContextualQA:
def __init__(self, client, model="claude-2.0"):
self.client = client
self.model = model
self.context = ""
self.questions = []
self.responses = []
def load_text(self, text):
self.context = text
def ask_question(self, question):
if self.questions:
# For the first question-answer pair, don't add HUMAN_PROMPT before the question
first_pair = f"Question: {self.questions[0]}\n{AI_PROMPT} Answer: {self.responses[0]}"
# For subsequent questions, include both HUMAN_PROMPT and AI_PROMPT
subsequent_pairs = "\n".join(
[
f"{HUMAN_PROMPT} Question: {q}\n{AI_PROMPT} Answer: {a}"
for q, a in zip(self.questions[1:], self.responses[1:])
]
)
history_context = f"{first_pair}\n{subsequent_pairs}"
else:
history_context = ""
full_context = f"{self.context}\n\n{history_context}\n"
prompt = f"{HUMAN_PROMPT} {full_context} {HUMAN_PROMPT} {question} {AI_PROMPT}"
response = self.client.completions.create(
prompt=prompt,
stop_sequences=[HUMAN_PROMPT],
max_tokens_to_sample=6000,
model=self.model,
stream=False,
)
answer = response.completion
self.questions.append(question)
self.responses.append(answer)
return answer
def clear_context(self):
self.context = ""
self.questions = []
self.responses = []
def __getstate__(self):
state = self.__dict__.copy()
del state["client"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.client = None
def load_context(paper_id):
global LEADING_PROMPT
# First, try to get the paper from Hugging Face
latex_source = get_paper_from_huggingface(paper_id)
# If not found, use arxiv_latex_extractor
if not latex_source:
try:
latex_source = get_paper_content(paper_id)
except Exception as e:
return None, [(f"Error loading paper with id {paper_id}: {e}",)]
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model = ContextualQA(client, model="claude-2.0")
context = f"{LEADING_PROMPT}\n{latex_source}"
qa_model.load_text(context)
title, abstract = get_paper_info(paper_id)
title = replace_texttt(title)
abstract = replace_texttt(abstract)
return (
qa_model,
[
(
f"Load the paper with id {paper_id}.",
f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded. You can now ask questions.",
)
],
)
def answer_fn(qa_model, question, chat_history):
# if question is empty, tell user that they need to ask a question
if question == "":
chat_history.append(("No Question Asked", "Please ask a question."))
return qa_model, chat_history, ""
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model.client = client
try:
answer = qa_model.ask_question(question)
except Exception as e:
chat_history.append(("Error Asking Question", str(e)))
return qa_model, chat_history, ""
chat_history.append((question, answer))
return qa_model, chat_history, ""
def clear_context():
return []
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(
"""
<h1 style='text-align: center; font-size: 24px;'>
Explore ArXiv Papers in Depth with <code>claude-2.0</code> - Ask Questions and Get Answers Instantly
</h1>
"""
)
gr.HTML(
"""
<p style='text-align: justify; font-size: 18px; margin: 10px;'>
Explore the depths of ArXiv papers with our interactive app, powered by the advanced <code>claude-2.0</code> model. Ask detailed questions and get immediate, context-rich answers from academic papers.
</p>
"""
)
gr.HTML(
"""
<center>
<a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="vertical-align: middle; max-width: 100px; margin-right: 10px;">
</a>
<span style="font-size: 14px; vertical-align: middle;">
Duplicate the Space with your Anthropic API Key &nbsp;|&nbsp;
Follow me on Twitter for more updates: <a href="https://twitter.com/taesiri" target="_blank">@taesiri</a>
</span>
</center>
"""
)
with gr.Column():
with gr.Row():
paper_id_input = gr.Textbox(label="Enter Paper ID", value="2310.12103")
btn_load = gr.Button("Load Paper")
qa_model = gr.State()
with gr.Column():
chatbot = gr.Chatbot().style(color_map=("blue", "yellow"))
question_txt = gr.Textbox(
label="Question", lines=1, placeholder="Type your question here..."
)
btn_answer = gr.Button("Answer Question")
btn_clear = gr.Button("Clear Chat")
gr.HTML(
"""<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>"""
)
gr.Markdown(
"## Acknowledgements\n"
"This project is made possible through the generous support of "
"[Anthropic](https://www.anthropic.com/), who provided free access to the `claude-2.0` API."
)
btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot])
btn_answer.click(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
question_txt.submit(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
btn_clear.click(clear_context, outputs=[chatbot])
# demo.launch()
app.mount("/js", StaticFiles(directory="js"), name="js")
gr.mount_gradio_app(app, demo, path="/")