Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe) | |
# 2020 Northwestern Polytechnical University (Pengcheng Guo) | |
# 2020 Mobvoi Inc (Binbin Zhang) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Swish() activation function for Conformer.""" | |
import torch | |
from torch import nn, sin, pow | |
from torch.nn import Parameter | |
class Swish(torch.nn.Module): | |
"""Construct an Swish object.""" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Return Swish activation function.""" | |
return x * torch.sigmoid(x) | |
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
class Snake(nn.Module): | |
''' | |
Implementation of a sine-based periodic activation function | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter | |
References: | |
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snake(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
''' | |
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False): | |
''' | |
Initialization. | |
INPUT: | |
- in_features: shape of the input | |
- alpha: trainable parameter | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
alpha will be trained along with the rest of your model. | |
''' | |
super(Snake, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = Parameter(torch.zeros(in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
''' | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
Snake ∶= x + 1/a * sin^2 (xa) | |
''' | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
return x | |