Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu) | |
# 2024 Alibaba Inc (Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Subsampling layer definition.""" | |
from typing import Tuple, Union | |
import torch | |
class BaseSubsampling(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.right_context = 0 | |
self.subsampling_rate = 1 | |
def position_encoding(self, offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
return self.pos_enc.position_encoding(offset, size) | |
class EmbedinigNoSubsampling(BaseSubsampling): | |
"""Embedding input without subsampling | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
super().__init__() | |
self.embed = torch.nn.Embedding(idim, odim) | |
self.pos_enc = pos_enc_class | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Input x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: linear input tensor (#batch, time', odim), | |
where time' = time . | |
torch.Tensor: linear input mask (#batch, 1, time'), | |
where time' = time . | |
""" | |
x = self.embed(x) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask | |
class LinearNoSubsampling(BaseSubsampling): | |
"""Linear transform the input without subsampling | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an linear object.""" | |
super().__init__() | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(idim, odim), | |
torch.nn.LayerNorm(odim, eps=1e-5), | |
torch.nn.Dropout(dropout_rate), | |
) | |
self.pos_enc = pos_enc_class | |
self.right_context = 0 | |
self.subsampling_rate = 1 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Input x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: linear input tensor (#batch, time', odim), | |
where time' = time . | |
torch.Tensor: linear input mask (#batch, 1, time'), | |
where time' = time . | |
""" | |
x = self.out(x) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask | |
class Conv1dSubsampling2(BaseSubsampling): | |
"""Convolutional 1D subsampling (to 1/2 length). | |
It is designed for Whisper, ref: | |
https://github.com/openai/whisper/blob/main/whisper/model.py | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an Conv1dSubsampling2 object.""" | |
super().__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1), | |
torch.nn.GELU(), | |
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1), | |
torch.nn.GELU(), | |
) | |
self.pos_enc = pos_enc_class | |
# The right context for every conv layer is computed by: | |
# (kernel_size - 1) * frame_rate_of_this_layer | |
self.subsampling_rate = 2 | |
# 4 = (3 - 1) * 1 + (3 - 1) * 1 | |
self.right_context = 4 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 2. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 2. | |
torch.Tensor: positional encoding | |
""" | |
time = x.size(1) | |
x = x.transpose(1, 2) # (b, f, t) | |
x = self.conv(x) | |
x = x.transpose(1, 2) # (b, t, f) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2] | |
class Conv2dSubsampling4(BaseSubsampling): | |
"""Convolutional 2D subsampling (to 1/4 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an Conv2dSubsampling4 object.""" | |
super().__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2), | |
torch.nn.ReLU(), | |
) | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)) | |
self.pos_enc = pos_enc_class | |
# The right context for every conv layer is computed by: | |
# (kernel_size - 1) * frame_rate_of_this_layer | |
self.subsampling_rate = 4 | |
# 6 = (3 - 1) * 1 + (3 - 1) * 2 | |
self.right_context = 6 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 4. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 4. | |
torch.Tensor: positional encoding | |
""" | |
x = x.unsqueeze(1) # (b, c=1, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2] | |
class Conv2dSubsampling6(BaseSubsampling): | |
"""Convolutional 2D subsampling (to 1/6 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
pos_enc (torch.nn.Module): Custom position encoding layer. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an Conv2dSubsampling6 object.""" | |
super().__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 5, 3), | |
torch.nn.ReLU(), | |
) | |
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), | |
odim) | |
self.pos_enc = pos_enc_class | |
# 10 = (3 - 1) * 1 + (5 - 1) * 2 | |
self.subsampling_rate = 6 | |
self.right_context = 10 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 6. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 6. | |
torch.Tensor: positional encoding | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3] | |
class Conv2dSubsampling8(BaseSubsampling): | |
"""Convolutional 2D subsampling (to 1/8 length). | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an Conv2dSubsampling8 object.""" | |
super().__init__() | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d(1, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d(odim, odim, 3, 2), | |
torch.nn.ReLU(), | |
) | |
self.linear = torch.nn.Linear( | |
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim) | |
self.pos_enc = pos_enc_class | |
self.subsampling_rate = 8 | |
# 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4 | |
self.right_context = 14 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Subsample x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: Subsampled tensor (#batch, time', odim), | |
where time' = time // 8. | |
torch.Tensor: Subsampled mask (#batch, 1, time'), | |
where time' = time // 8. | |
torch.Tensor: positional encoding | |
""" | |
x = x.unsqueeze(1) # (b, c, t, f) | |
x = self.conv(x) | |
b, c, t, f = x.size() | |
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2] | |
class LegacyLinearNoSubsampling(BaseSubsampling): | |
"""Linear transform the input without subsampling | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an linear object.""" | |
super().__init__() | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(idim, odim), | |
torch.nn.LayerNorm(odim, eps=1e-5), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.ReLU(), | |
) | |
self.pos_enc = pos_enc_class | |
self.right_context = 0 | |
self.subsampling_rate = 1 | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Input x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: linear input tensor (#batch, time', odim), | |
where time' = time . | |
torch.Tensor: linear input mask (#batch, 1, time'), | |
where time' = time . | |
""" | |
x = self.out(x) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb, x_mask | |