Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang) | |
# 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Unility functions for Transformer.""" | |
from typing import List | |
import torch | |
IGNORE_ID = -1 | |
def pad_list(xs: List[torch.Tensor], pad_value: int): | |
"""Perform padding for the list of tensors. | |
Args: | |
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. | |
pad_value (float): Value for padding. | |
Returns: | |
Tensor: Padded tensor (B, Tmax, `*`). | |
Examples: | |
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] | |
>>> x | |
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] | |
>>> pad_list(x, 0) | |
tensor([[1., 1., 1., 1.], | |
[1., 1., 0., 0.], | |
[1., 0., 0., 0.]]) | |
""" | |
max_len = max([len(item) for item in xs]) | |
batchs = len(xs) | |
ndim = xs[0].ndim | |
if ndim == 1: | |
pad_res = torch.zeros(batchs, | |
max_len, | |
dtype=xs[0].dtype, | |
device=xs[0].device) | |
elif ndim == 2: | |
pad_res = torch.zeros(batchs, | |
max_len, | |
xs[0].shape[1], | |
dtype=xs[0].dtype, | |
device=xs[0].device) | |
elif ndim == 3: | |
pad_res = torch.zeros(batchs, | |
max_len, | |
xs[0].shape[1], | |
xs[0].shape[2], | |
dtype=xs[0].dtype, | |
device=xs[0].device) | |
else: | |
raise ValueError(f"Unsupported ndim: {ndim}") | |
pad_res.fill_(pad_value) | |
for i in range(batchs): | |
pad_res[i, :len(xs[i])] = xs[i] | |
return pad_res | |
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor, | |
ignore_label: int) -> torch.Tensor: | |
"""Calculate accuracy. | |
Args: | |
pad_outputs (Tensor): Prediction tensors (B * Lmax, D). | |
pad_targets (LongTensor): Target label tensors (B, Lmax). | |
ignore_label (int): Ignore label id. | |
Returns: | |
torch.Tensor: Accuracy value (0.0 - 1.0). | |
""" | |
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1), | |
pad_outputs.size(1)).argmax(2) | |
mask = pad_targets != ignore_label | |
numerator = torch.sum( | |
pad_pred.masked_select(mask) == pad_targets.masked_select(mask)) | |
denominator = torch.sum(mask) | |
return (numerator / denominator).detach() | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |