Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com) | |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import print_function | |
import argparse | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
import os | |
import sys | |
import onnxruntime | |
import random | |
import torch | |
from tqdm import tqdm | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/../..'.format(ROOT_DIR)) | |
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) | |
from cosyvoice.cli.cosyvoice import CosyVoice | |
def get_dummy_input(batch_size, seq_len, out_channels, device): | |
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) | |
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device) | |
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) | |
t = torch.rand((batch_size), dtype=torch.float32, device=device) | |
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device) | |
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) | |
return x, mask, mu, t, spks, cond | |
def get_args(): | |
parser = argparse.ArgumentParser(description='export your model for deployment') | |
parser.add_argument('--model_dir', | |
type=str, | |
default='pretrained_models/CosyVoice-300M', | |
help='local path') | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False) | |
# 1. export flow decoder estimator | |
estimator = cosyvoice.model.flow.decoder.estimator | |
device = cosyvoice.model.device | |
batch_size, seq_len = 1, 256 | |
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels | |
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device) | |
torch.onnx.export( | |
estimator, | |
(x, mask, mu, t, spks, cond), | |
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), | |
export_params=True, | |
opset_version=18, | |
do_constant_folding=True, | |
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'], | |
output_names=['estimator_out'], | |
dynamic_axes={ | |
'x': {0: 'batch_size', 2: 'seq_len'}, | |
'mask': {0: 'batch_size', 2: 'seq_len'}, | |
'mu': {0: 'batch_size', 2: 'seq_len'}, | |
'cond': {0: 'batch_size', 2: 'seq_len'}, | |
't': {0: 'batch_size'}, | |
'spks': {0: 'batch_size'}, | |
'estimator_out': {0: 'batch_size', 2: 'seq_len'}, | |
} | |
) | |
# 2. test computation consistency | |
option = onnxruntime.SessionOptions() | |
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
option.intra_op_num_threads = 1 | |
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] | |
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), | |
sess_options=option, providers=providers) | |
for _ in tqdm(range(10)): | |
x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device) | |
output_pytorch = estimator(x, mask, mu, t, spks, cond) | |
ort_inputs = { | |
'x': x.cpu().numpy(), | |
'mask': mask.cpu().numpy(), | |
'mu': mu.cpu().numpy(), | |
't': t.cpu().numpy(), | |
'spks': spks.cpu().numpy(), | |
'cond': cond.cpu().numpy() | |
} | |
output_onnx = estimator_onnx.run(None, ort_inputs)[0] | |
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4) | |
if __name__ == "__main__": | |
main() | |