Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import print_function | |
import argparse | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
import os | |
import torch | |
from torch.utils.data import DataLoader | |
import torchaudio | |
from hyperpyyaml import load_hyperpyyaml | |
from tqdm import tqdm | |
from cosyvoice.cli.model import CosyVoiceModel | |
from cosyvoice.dataset.dataset import Dataset | |
def get_args(): | |
parser = argparse.ArgumentParser(description='inference with your model') | |
parser.add_argument('--config', required=True, help='config file') | |
parser.add_argument('--prompt_data', required=True, help='prompt data file') | |
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file') | |
parser.add_argument('--tts_text', required=True, help='tts input file') | |
parser.add_argument('--llm_model', required=True, help='llm model file') | |
parser.add_argument('--flow_model', required=True, help='flow model file') | |
parser.add_argument('--hifigan_model', required=True, help='hifigan model file') | |
parser.add_argument('--gpu', | |
type=int, | |
default=-1, | |
help='gpu id for this rank, -1 for cpu') | |
parser.add_argument('--mode', | |
default='sft', | |
choices=['sft', 'zero_shot'], | |
help='inference mode') | |
parser.add_argument('--result_dir', required=True, help='asr result file') | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) | |
# Init cosyvoice models from configs | |
use_cuda = args.gpu >= 0 and torch.cuda.is_available() | |
device = torch.device('cuda' if use_cuda else 'cpu') | |
with open(args.config, 'r') as f: | |
configs = load_hyperpyyaml(f) | |
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift']) | |
model.load(args.llm_model, args.flow_model, args.hifigan_model) | |
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, | |
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data) | |
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0) | |
del configs | |
os.makedirs(args.result_dir, exist_ok=True) | |
fn = os.path.join(args.result_dir, 'wav.scp') | |
f = open(fn, 'w') | |
with torch.no_grad(): | |
for _, batch in tqdm(enumerate(test_data_loader)): | |
utts = batch["utts"] | |
assert len(utts) == 1, "inference mode only support batchsize 1" | |
text_token = batch["text_token"].to(device) | |
text_token_len = batch["text_token_len"].to(device) | |
tts_index = batch["tts_index"] | |
tts_text_token = batch["tts_text_token"].to(device) | |
tts_text_token_len = batch["tts_text_token_len"].to(device) | |
speech_token = batch["speech_token"].to(device) | |
speech_token_len = batch["speech_token_len"].to(device) | |
speech_feat = batch["speech_feat"].to(device) | |
speech_feat_len = batch["speech_feat_len"].to(device) | |
utt_embedding = batch["utt_embedding"].to(device) | |
spk_embedding = batch["spk_embedding"].to(device) | |
if args.mode == 'sft': | |
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, | |
'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding} | |
else: | |
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, | |
'prompt_text': text_token, 'prompt_text_len': text_token_len, | |
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len, | |
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, | |
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, | |
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding} | |
tts_speeches = [] | |
for model_output in model.inference(**model_input): | |
tts_speeches.append(model_output['tts_speech']) | |
tts_speeches = torch.concat(tts_speeches, dim=1) | |
tts_key = '{}_{}'.format(utts[0], tts_index[0]) | |
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key)) | |
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050) | |
f.write('{} {}\n'.format(tts_key, tts_fn)) | |
f.flush() | |
f.close() | |
logging.info('Result wav.scp saved in {}'.format(fn)) | |
if __name__ == '__main__': | |
main() | |