Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
import logging | |
import torch | |
from tqdm import tqdm | |
import onnxruntime | |
import numpy as np | |
import torchaudio | |
import whisper | |
def single_job(utt): | |
audio, sample_rate = torchaudio.load(utt2wav[utt]) | |
if sample_rate != 16000: | |
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio) | |
if audio.shape[1] / 16000 > 30: | |
logging.warning('do not support extract speech token for audio longer than 30s') | |
speech_token = [] | |
else: | |
feat = whisper.log_mel_spectrogram(audio, n_mels=128) | |
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(), | |
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist() | |
return utt, speech_token | |
def main(args): | |
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()] | |
utt2speech_token = {} | |
for future in tqdm(as_completed(all_task)): | |
utt, speech_token = future.result() | |
utt2speech_token[utt] = speech_token | |
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir)) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--dir", type=str) | |
parser.add_argument("--onnx_path", type=str) | |
parser.add_argument("--num_thread", type=int, default=8) | |
args = parser.parse_args() | |
utt2wav = {} | |
with open('{}/wav.scp'.format(args.dir)) as f: | |
for l in f: | |
l = l.replace('\n', '').split() | |
utt2wav[l[0]] = l[1] | |
option = onnxruntime.SessionOptions() | |
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
option.intra_op_num_threads = 1 | |
providers = ["CUDAExecutionProvider"] | |
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers) | |
executor = ThreadPoolExecutor(max_workers=args.num_thread) | |
main(args) | |