CosyVoice's picture
fix lint
90433f5
raw
history blame
4.24 kB
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from concurrent import futures
import argparse
import cosyvoice_pb2
import cosyvoice_pb2_grpc
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import grpc
import torch
import numpy as np
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../../..'.format(ROOT_DIR))
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
def __init__(self, args):
self.cosyvoice = CosyVoice(args.model_dir)
logging.info('grpc service initialized')
def Inference(self, request, context):
if request.HasField('sft_request'):
logging.info('get sft inference request')
model_output = self.cosyvoice.inference_sft(request.sft_request.tts_text, request.sft_request.spk_id)
elif request.HasField('zero_shot_request'):
logging.info('get zero_shot inference request')
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text,
request.zero_shot_request.prompt_text,
prompt_speech_16k)
elif request.HasField('cross_lingual_request'):
logging.info('get cross_lingual inference request')
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k)
else:
logging.info('get instruct inference request')
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text,
request.instruct_request.spk_id,
request.instruct_request.instruct_text)
logging.info('send inference response')
for i in model_output:
response = cosyvoice_pb2.Response()
response.tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
yield response
def main():
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc)
cosyvoice_pb2_grpc.add_CosyVoiceServicer_to_server(CosyVoiceServiceImpl(args), grpcServer)
grpcServer.add_insecure_port('0.0.0.0:{}'.format(args.port))
grpcServer.start()
logging.info("server listening on 0.0.0.0:{}".format(args.port))
grpcServer.wait_for_termination()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port',
type=int,
default=50000)
parser.add_argument('--max_conc',
type=int,
default=4)
parser.add_argument('--model_dir',
type=str,
default='iic/CosyVoice-300M',
help='local path or modelscope repo id')
args = parser.parse_args()
main()