Spaces:
Running
on
Zero
Running
on
Zero
禾息
commited on
Commit
•
6e7f5b9
1
Parent(s):
53a3c1b
update
Browse files- cosyvoice/bin/export_trt.py +3 -3
- cosyvoice/cli/model.py +1 -2
- cosyvoice/flow/flow_matching.py +8 -44
cosyvoice/bin/export_trt.py
CHANGED
@@ -66,13 +66,13 @@ def main():
|
|
66 |
opset_version=18,
|
67 |
do_constant_folding=True,
|
68 |
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
69 |
-
output_names=['
|
70 |
dynamic_axes={
|
71 |
'x': {2: 'seq_len'},
|
72 |
'mask': {2: 'seq_len'},
|
73 |
'mu': {2: 'seq_len'},
|
74 |
'cond': {2: 'seq_len'},
|
75 |
-
'
|
76 |
}
|
77 |
)
|
78 |
|
@@ -95,7 +95,7 @@ def main():
|
|
95 |
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
96 |
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
97 |
("--fp16" if args.export_half else "")
|
98 |
-
|
99 |
print("execute ", trtexec_cmd)
|
100 |
|
101 |
os.system(trtexec_cmd)
|
|
|
66 |
opset_version=18,
|
67 |
do_constant_folding=True,
|
68 |
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
69 |
+
output_names=['estimator_out'],
|
70 |
dynamic_axes={
|
71 |
'x': {2: 'seq_len'},
|
72 |
'mask': {2: 'seq_len'},
|
73 |
'mu': {2: 'seq_len'},
|
74 |
'cond': {2: 'seq_len'},
|
75 |
+
'estimator_out': {2: 'seq_len'},
|
76 |
}
|
77 |
)
|
78 |
|
|
|
95 |
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
96 |
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
97 |
("--fp16" if args.export_half else "")
|
98 |
+
|
99 |
print("execute ", trtexec_cmd)
|
100 |
|
101 |
os.system(trtexec_cmd)
|
cosyvoice/cli/model.py
CHANGED
@@ -83,8 +83,7 @@ class CosyVoiceModel:
|
|
83 |
with open(trt_file_path, 'rb') as f:
|
84 |
serialized_engine = f.read()
|
85 |
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
86 |
-
self.flow.decoder.
|
87 |
-
self.flow.decoder.estimator_engine = engine
|
88 |
|
89 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
90 |
with self.llm_context:
|
|
|
83 |
with open(trt_file_path, 'rb') as f:
|
84 |
serialized_engine = f.read()
|
85 |
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
86 |
+
self.flow.decoder.estimator = engine.create_execution_context()
|
|
|
87 |
|
88 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
89 |
with self.llm_context:
|
cosyvoice/flow/flow_matching.py
CHANGED
@@ -30,10 +30,6 @@ class ConditionalCFM(BASECFM):
|
|
30 |
# Just change the architecture of the estimator here
|
31 |
self.estimator = estimator
|
32 |
|
33 |
-
self.estimator_context = None
|
34 |
-
self.estimator_engine = None
|
35 |
-
self.is_saved = None
|
36 |
-
|
37 |
@torch.inference_mode()
|
38 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
39 |
"""Forward diffusion
|
@@ -102,7 +98,11 @@ class ConditionalCFM(BASECFM):
|
|
102 |
return sol[-1]
|
103 |
|
104 |
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
assert self.training is False, 'tensorrt cannot be used in training'
|
107 |
bs = x.shape[0]
|
108 |
hs = x.shape[1]
|
@@ -116,50 +116,14 @@ class ConditionalCFM(BASECFM):
|
|
116 |
self.estimator_context.set_input_shape("spks", spks.shape)
|
117 |
self.estimator_context.set_input_shape("cond", cond.shape)
|
118 |
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
|
|
119 |
|
120 |
for i in range(len(bindings)):
|
121 |
-
self.
|
122 |
|
123 |
handle = torch.cuda.current_stream().cuda_stream
|
124 |
-
self.
|
125 |
return ret
|
126 |
-
else:
|
127 |
-
|
128 |
-
if self.is_saved == None:
|
129 |
-
self.is_saved = True
|
130 |
-
output = self.estimator.forward(x, mask, mu, t, spks, cond)
|
131 |
-
torch.save(x, "x.pt")
|
132 |
-
torch.save(mask, "mask.pt")
|
133 |
-
torch.save(mu, "mu.pt")
|
134 |
-
torch.save(t, "t.pt")
|
135 |
-
torch.save(spks, "spks.pt")
|
136 |
-
torch.save(cond, "cond.pt")
|
137 |
-
torch.save(output, "output.pt")
|
138 |
-
dummy_input = (x, mask, mu, t, spks, cond)
|
139 |
-
torch.onnx.export(
|
140 |
-
self.estimator,
|
141 |
-
dummy_input,
|
142 |
-
"estimator_fp32.onnx",
|
143 |
-
export_params=True,
|
144 |
-
opset_version=17,
|
145 |
-
do_constant_folding=True,
|
146 |
-
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
147 |
-
output_names=['output'],
|
148 |
-
dynamic_axes={
|
149 |
-
'x': {2: 'seq_len'},
|
150 |
-
'mask': {2: 'seq_len'},
|
151 |
-
'mu': {2: 'seq_len'},
|
152 |
-
'cond': {2: 'seq_len'},
|
153 |
-
'output': {2: 'seq_len'},
|
154 |
-
}
|
155 |
-
)
|
156 |
-
# print("x, x.shape", x, x.shape)
|
157 |
-
# print("mask, mask.shape", mask, mask.shape)
|
158 |
-
# print("mu, mu.shape", mu, mu.shape)
|
159 |
-
# print("t, t.shape", t, t.shape)
|
160 |
-
# print("spks, spks.shape", spks, spks.shape)
|
161 |
-
# print("cond, cond.shape", cond, cond.shape)
|
162 |
-
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
163 |
|
164 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
165 |
"""Computes diffusion loss
|
|
|
30 |
# Just change the architecture of the estimator here
|
31 |
self.estimator = estimator
|
32 |
|
|
|
|
|
|
|
|
|
33 |
@torch.inference_mode()
|
34 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
35 |
"""Forward diffusion
|
|
|
98 |
return sol[-1]
|
99 |
|
100 |
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
101 |
+
|
102 |
+
if not isinstance(self.estimator, torch.nn.Module):
|
103 |
+
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
104 |
+
|
105 |
+
else:
|
106 |
assert self.training is False, 'tensorrt cannot be used in training'
|
107 |
bs = x.shape[0]
|
108 |
hs = x.shape[1]
|
|
|
116 |
self.estimator_context.set_input_shape("spks", spks.shape)
|
117 |
self.estimator_context.set_input_shape("cond", cond.shape)
|
118 |
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
119 |
+
names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
|
120 |
|
121 |
for i in range(len(bindings)):
|
122 |
+
self.estimator.set_tensor_address(names[i], bindings[i])
|
123 |
|
124 |
handle = torch.cuda.current_stream().cuda_stream
|
125 |
+
self.estimator.execute_async_v3(stream_handle=handle)
|
126 |
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
129 |
"""Computes diffusion loss
|