Spaces:
Running
on
Zero
Running
on
Zero
Implementing concurrent.futures
Browse files- tools/extract_embedding.py +58 -83
tools/extract_embedding.py
CHANGED
@@ -13,71 +13,40 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
|
|
|
|
|
|
|
|
16 |
import torch
|
17 |
import torchaudio
|
18 |
-
from tqdm import tqdm
|
19 |
-
import onnxruntime
|
20 |
import torchaudio.compliance.kaldi as kaldi
|
21 |
-
from
|
22 |
-
from threading import Thread
|
23 |
-
|
24 |
-
|
25 |
-
class ExtractEmbedding:
|
26 |
-
def __init__(self, model_path: str, queue: Queue, out_queue: Queue):
|
27 |
-
self.model_path = model_path
|
28 |
-
self.queue = queue
|
29 |
-
self.out_queue = out_queue
|
30 |
-
self.is_run = True
|
31 |
-
|
32 |
-
def run(self):
|
33 |
-
self.consumer_thread = Thread(target=self.consumer)
|
34 |
-
self.consumer_thread.start()
|
35 |
-
|
36 |
-
def stop(self):
|
37 |
-
self.is_run = False
|
38 |
-
self.consumer_thread.join()
|
39 |
-
|
40 |
-
def consumer(self):
|
41 |
-
option = onnxruntime.SessionOptions()
|
42 |
-
option.graph_optimization_level = (
|
43 |
-
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
44 |
-
)
|
45 |
-
option.intra_op_num_threads = 1
|
46 |
-
providers = ["CPUExecutionProvider"]
|
47 |
-
ort_session = onnxruntime.InferenceSession(
|
48 |
-
self.model_path, sess_options=option, providers=providers
|
49 |
-
)
|
50 |
|
51 |
-
while self.is_run:
|
52 |
-
try:
|
53 |
-
utt, wav_file = self.queue.get(timeout=1)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
self.is_run = False
|
80 |
-
break
|
81 |
|
82 |
|
83 |
def main(args):
|
@@ -91,32 +60,38 @@ def main(args):
|
|
91 |
l = l.replace("\n", "").split()
|
92 |
utt2spk[l[0]] = l[1]
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
utt2embedding, spk2embedding = {}, {}
|
102 |
-
for utt in
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
with tqdm(desc="Process data: ", total=len(utt2wav)) as pbar:
|
109 |
-
while any([c.is_run for c in consumers]):
|
110 |
-
try:
|
111 |
-
utt, embedding = output_queue.get(timeout=1)
|
112 |
-
utt2embedding[utt] = embedding
|
113 |
-
spk = utt2spk[utt]
|
114 |
-
if spk not in spk2embedding:
|
115 |
-
spk2embedding[spk] = []
|
116 |
-
spk2embedding[spk].append(embedding)
|
117 |
-
pbar.update(1)
|
118 |
-
except Empty:
|
119 |
-
continue
|
120 |
|
121 |
for k, v in spk2embedding.items():
|
122 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
16 |
+
import os
|
17 |
+
from concurrent.futures import ThreadPoolExecutor
|
18 |
+
|
19 |
+
import onnxruntime
|
20 |
import torch
|
21 |
import torchaudio
|
|
|
|
|
22 |
import torchaudio.compliance.kaldi as kaldi
|
23 |
+
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
25 |
|
26 |
+
def extract_embedding(input_list):
|
27 |
+
utt, wav_file, ort_session = input_list
|
28 |
+
|
29 |
+
audio, sample_rate = torchaudio.load(wav_file)
|
30 |
+
if sample_rate != 16000:
|
31 |
+
audio = torchaudio.transforms.Resample(
|
32 |
+
orig_freq=sample_rate, new_freq=16000
|
33 |
+
)(audio)
|
34 |
+
feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
|
35 |
+
feat = feat - feat.mean(dim=0, keepdim=True)
|
36 |
+
embedding = (
|
37 |
+
ort_session.run(
|
38 |
+
None,
|
39 |
+
{
|
40 |
+
ort_session.get_inputs()[0]
|
41 |
+
.name: feat.unsqueeze(dim=0)
|
42 |
+
.cpu()
|
43 |
+
.numpy()
|
44 |
+
},
|
45 |
+
)[0]
|
46 |
+
.flatten()
|
47 |
+
.tolist()
|
48 |
+
)
|
49 |
+
return (utt, embedding)
|
|
|
|
|
50 |
|
51 |
|
52 |
def main(args):
|
|
|
60 |
l = l.replace("\n", "").split()
|
61 |
utt2spk[l[0]] = l[1]
|
62 |
|
63 |
+
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
64 |
+
|
65 |
+
option = onnxruntime.SessionOptions()
|
66 |
+
option.graph_optimization_level = (
|
67 |
+
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
68 |
+
)
|
69 |
+
option.intra_op_num_threads = 1
|
70 |
+
providers = ["CPUExecutionProvider"]
|
71 |
+
ort_session = onnxruntime.InferenceSession(
|
72 |
+
args.onnx_path, sess_options=option, providers=providers
|
73 |
+
)
|
74 |
+
|
75 |
+
inputs = [
|
76 |
+
(utt, utt2wav[utt], ort_session)
|
77 |
+
for utt in tqdm(utt2wav.keys(), desc="Load data")
|
78 |
]
|
79 |
+
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
80 |
+
results = list(
|
81 |
+
tqdm(
|
82 |
+
executor.map(extract_embedding, inputs),
|
83 |
+
total=len(inputs),
|
84 |
+
desc="Process data: ",
|
85 |
+
)
|
86 |
+
)
|
87 |
|
88 |
utt2embedding, spk2embedding = {}, {}
|
89 |
+
for utt, embedding in results:
|
90 |
+
utt2embedding[utt] = embedding
|
91 |
+
spk = utt2spk[utt]
|
92 |
+
if spk not in spk2embedding:
|
93 |
+
spk2embedding[spk] = []
|
94 |
+
spk2embedding[spk].append(embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
for k, v in spk2embedding.items():
|
97 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|