Spaces:
Running
on
Zero
Running
on
Zero
add 25hz text tokenizer
Browse files
cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cosyvoice/tokenizer/tokenizer.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import os
|
3 |
+
import string
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from functools import cached_property, lru_cache
|
6 |
+
from typing import Dict, List, Optional, Tuple
|
7 |
+
|
8 |
+
import tiktoken
|
9 |
+
|
10 |
+
LANGUAGES = {
|
11 |
+
"en": "english",
|
12 |
+
"zh": "chinese",
|
13 |
+
"de": "german",
|
14 |
+
"es": "spanish",
|
15 |
+
"ru": "russian",
|
16 |
+
"ko": "korean",
|
17 |
+
"fr": "french",
|
18 |
+
"ja": "japanese",
|
19 |
+
"pt": "portuguese",
|
20 |
+
"tr": "turkish",
|
21 |
+
"pl": "polish",
|
22 |
+
"ca": "catalan",
|
23 |
+
"nl": "dutch",
|
24 |
+
"ar": "arabic",
|
25 |
+
"sv": "swedish",
|
26 |
+
"it": "italian",
|
27 |
+
"id": "indonesian",
|
28 |
+
"hi": "hindi",
|
29 |
+
"fi": "finnish",
|
30 |
+
"vi": "vietnamese",
|
31 |
+
"he": "hebrew",
|
32 |
+
"uk": "ukrainian",
|
33 |
+
"el": "greek",
|
34 |
+
"ms": "malay",
|
35 |
+
"cs": "czech",
|
36 |
+
"ro": "romanian",
|
37 |
+
"da": "danish",
|
38 |
+
"hu": "hungarian",
|
39 |
+
"ta": "tamil",
|
40 |
+
"no": "norwegian",
|
41 |
+
"th": "thai",
|
42 |
+
"ur": "urdu",
|
43 |
+
"hr": "croatian",
|
44 |
+
"bg": "bulgarian",
|
45 |
+
"lt": "lithuanian",
|
46 |
+
"la": "latin",
|
47 |
+
"mi": "maori",
|
48 |
+
"ml": "malayalam",
|
49 |
+
"cy": "welsh",
|
50 |
+
"sk": "slovak",
|
51 |
+
"te": "telugu",
|
52 |
+
"fa": "persian",
|
53 |
+
"lv": "latvian",
|
54 |
+
"bn": "bengali",
|
55 |
+
"sr": "serbian",
|
56 |
+
"az": "azerbaijani",
|
57 |
+
"sl": "slovenian",
|
58 |
+
"kn": "kannada",
|
59 |
+
"et": "estonian",
|
60 |
+
"mk": "macedonian",
|
61 |
+
"br": "breton",
|
62 |
+
"eu": "basque",
|
63 |
+
"is": "icelandic",
|
64 |
+
"hy": "armenian",
|
65 |
+
"ne": "nepali",
|
66 |
+
"mn": "mongolian",
|
67 |
+
"bs": "bosnian",
|
68 |
+
"kk": "kazakh",
|
69 |
+
"sq": "albanian",
|
70 |
+
"sw": "swahili",
|
71 |
+
"gl": "galician",
|
72 |
+
"mr": "marathi",
|
73 |
+
"pa": "punjabi",
|
74 |
+
"si": "sinhala",
|
75 |
+
"km": "khmer",
|
76 |
+
"sn": "shona",
|
77 |
+
"yo": "yoruba",
|
78 |
+
"so": "somali",
|
79 |
+
"af": "afrikaans",
|
80 |
+
"oc": "occitan",
|
81 |
+
"ka": "georgian",
|
82 |
+
"be": "belarusian",
|
83 |
+
"tg": "tajik",
|
84 |
+
"sd": "sindhi",
|
85 |
+
"gu": "gujarati",
|
86 |
+
"am": "amharic",
|
87 |
+
"yi": "yiddish",
|
88 |
+
"lo": "lao",
|
89 |
+
"uz": "uzbek",
|
90 |
+
"fo": "faroese",
|
91 |
+
"ht": "haitian creole",
|
92 |
+
"ps": "pashto",
|
93 |
+
"tk": "turkmen",
|
94 |
+
"nn": "nynorsk",
|
95 |
+
"mt": "maltese",
|
96 |
+
"sa": "sanskrit",
|
97 |
+
"lb": "luxembourgish",
|
98 |
+
"my": "myanmar",
|
99 |
+
"bo": "tibetan",
|
100 |
+
"tl": "tagalog",
|
101 |
+
"mg": "malagasy",
|
102 |
+
"as": "assamese",
|
103 |
+
"tt": "tatar",
|
104 |
+
"haw": "hawaiian",
|
105 |
+
"ln": "lingala",
|
106 |
+
"ha": "hausa",
|
107 |
+
"ba": "bashkir",
|
108 |
+
"jw": "javanese",
|
109 |
+
"su": "sundanese",
|
110 |
+
"yue": "cantonese",
|
111 |
+
"minnan": "minnan",
|
112 |
+
"wuyu": "wuyu",
|
113 |
+
"dialect": "dialect",
|
114 |
+
"zh/en": "zh/en",
|
115 |
+
"en/zh": "en/zh",
|
116 |
+
}
|
117 |
+
|
118 |
+
# language code lookup by name, with a few language aliases
|
119 |
+
TO_LANGUAGE_CODE = {
|
120 |
+
**{language: code for code, language in LANGUAGES.items()},
|
121 |
+
"burmese": "my",
|
122 |
+
"valencian": "ca",
|
123 |
+
"flemish": "nl",
|
124 |
+
"haitian": "ht",
|
125 |
+
"letzeburgesch": "lb",
|
126 |
+
"pushto": "ps",
|
127 |
+
"panjabi": "pa",
|
128 |
+
"moldavian": "ro",
|
129 |
+
"moldovan": "ro",
|
130 |
+
"sinhalese": "si",
|
131 |
+
"castilian": "es",
|
132 |
+
"mandarin": "zh",
|
133 |
+
}
|
134 |
+
|
135 |
+
AUDIO_EVENT = {
|
136 |
+
"ASR": "ASR",
|
137 |
+
"AED": "AED",
|
138 |
+
"SER": "SER",
|
139 |
+
"Speech": "Speech",
|
140 |
+
"/Speech": "/Speech",
|
141 |
+
"BGM": "BGM",
|
142 |
+
"/BGM": "/BGM",
|
143 |
+
"Laughter": "Laughter",
|
144 |
+
"/Laughter": "/Laughter",
|
145 |
+
"Applause": "Applause",
|
146 |
+
"/Applause": "/Applause",
|
147 |
+
}
|
148 |
+
|
149 |
+
EMOTION = {
|
150 |
+
"HAPPY": "HAPPY",
|
151 |
+
"SAD": "SAD",
|
152 |
+
"ANGRY": "ANGRY",
|
153 |
+
"NEUTRAL": "NEUTRAL",
|
154 |
+
}
|
155 |
+
|
156 |
+
TTS_Vocal_Token = {
|
157 |
+
"TTS/B": "TTS/B",
|
158 |
+
"TTS/O": "TTS/O",
|
159 |
+
"TTS/Q": "TTS/Q",
|
160 |
+
"TTS/A": "TTS/A",
|
161 |
+
"TTS/CO": "TTS/CO",
|
162 |
+
"TTS/CL": "TTS/CL",
|
163 |
+
"TTS/H": "TTS/H",
|
164 |
+
**{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
|
165 |
+
}
|
166 |
+
|
167 |
+
|
168 |
+
@dataclass
|
169 |
+
class Tokenizer:
|
170 |
+
"""A thin wrapper around `tiktoken` providing quick access to special tokens"""
|
171 |
+
|
172 |
+
encoding: tiktoken.Encoding
|
173 |
+
num_languages: int
|
174 |
+
language: Optional[str] = None
|
175 |
+
task: Optional[str] = None
|
176 |
+
sot_sequence: Tuple[int] = ()
|
177 |
+
special_tokens: Dict[str, int] = field(default_factory=dict)
|
178 |
+
|
179 |
+
def __post_init__(self):
|
180 |
+
for special in self.encoding.special_tokens_set:
|
181 |
+
special_token = self.encoding.encode_single_token(special)
|
182 |
+
self.special_tokens[special] = special_token
|
183 |
+
|
184 |
+
sot: int = self.special_tokens["<|startoftranscript|>"]
|
185 |
+
translate: int = self.special_tokens["<|translate|>"]
|
186 |
+
transcribe: int = self.special_tokens["<|transcribe|>"]
|
187 |
+
|
188 |
+
langs = tuple(LANGUAGES.keys())[: self.num_languages]
|
189 |
+
sot_sequence = [sot]
|
190 |
+
if self.language is not None:
|
191 |
+
sot_sequence.append(sot + 1 + langs.index(self.language))
|
192 |
+
if self.task is not None:
|
193 |
+
task_token: int = transcribe if self.task == "transcribe" else translate
|
194 |
+
sot_sequence.append(task_token)
|
195 |
+
|
196 |
+
self.sot_sequence = tuple(sot_sequence)
|
197 |
+
|
198 |
+
def encode(self, text, **kwargs):
|
199 |
+
return self.encoding.encode(text, **kwargs)
|
200 |
+
|
201 |
+
def decode(self, token_ids: List[int], **kwargs) -> str:
|
202 |
+
token_ids = [t for t in token_ids if t < self.timestamp_begin]
|
203 |
+
return self.encoding.decode(token_ids, **kwargs)
|
204 |
+
|
205 |
+
def decode_with_timestamps(self, token_ids: List[int], **kwargs) -> str:
|
206 |
+
"""
|
207 |
+
Timestamp tokens are above other special tokens' id range and are ignored by `decode()`.
|
208 |
+
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
209 |
+
"""
|
210 |
+
return self.encoding.decode(token_ids, **kwargs)
|
211 |
+
|
212 |
+
def get_vocab_size(self) -> int:
|
213 |
+
return self.encoding.n_vocab
|
214 |
+
|
215 |
+
@cached_property
|
216 |
+
def eot(self) -> int:
|
217 |
+
return self.encoding.eot_token
|
218 |
+
|
219 |
+
@cached_property
|
220 |
+
def transcribe(self) -> int:
|
221 |
+
return self.special_tokens["<|transcribe|>"]
|
222 |
+
|
223 |
+
@cached_property
|
224 |
+
def translate(self) -> int:
|
225 |
+
return self.special_tokens["<|translate|>"]
|
226 |
+
|
227 |
+
@cached_property
|
228 |
+
def sot(self) -> int:
|
229 |
+
return self.special_tokens["<|startoftranscript|>"]
|
230 |
+
|
231 |
+
@cached_property
|
232 |
+
def sot_lm(self) -> int:
|
233 |
+
return self.special_tokens["<|startoflm|>"]
|
234 |
+
|
235 |
+
@cached_property
|
236 |
+
def sot_prev(self) -> int:
|
237 |
+
return self.special_tokens["<|startofprev|>"]
|
238 |
+
|
239 |
+
@cached_property
|
240 |
+
def no_speech(self) -> int:
|
241 |
+
return self.special_tokens["<|nospeech|>"]
|
242 |
+
|
243 |
+
@cached_property
|
244 |
+
def no_timestamps(self) -> int:
|
245 |
+
return self.special_tokens["<|notimestamps|>"]
|
246 |
+
|
247 |
+
@cached_property
|
248 |
+
def timestamp_begin(self) -> int:
|
249 |
+
return self.special_tokens["<|0.00|>"]
|
250 |
+
|
251 |
+
@cached_property
|
252 |
+
def language_token(self) -> int:
|
253 |
+
"""Returns the token id corresponding to the value of the `language` field"""
|
254 |
+
if self.language is None:
|
255 |
+
raise ValueError("This tokenizer does not have language token configured")
|
256 |
+
|
257 |
+
return self.to_language_token(self.language)
|
258 |
+
|
259 |
+
def to_language_token(self, language):
|
260 |
+
if token := self.special_tokens.get(f"<|{language}|>", None):
|
261 |
+
return token
|
262 |
+
|
263 |
+
raise KeyError(f"Language {language} not found in tokenizer.")
|
264 |
+
|
265 |
+
@cached_property
|
266 |
+
def all_language_tokens(self) -> Tuple[int]:
|
267 |
+
result = []
|
268 |
+
for token, token_id in self.special_tokens.items():
|
269 |
+
if token.strip("<|>") in LANGUAGES:
|
270 |
+
result.append(token_id)
|
271 |
+
return tuple(result)[: self.num_languages]
|
272 |
+
|
273 |
+
@cached_property
|
274 |
+
def all_language_codes(self) -> Tuple[str]:
|
275 |
+
return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)
|
276 |
+
|
277 |
+
@cached_property
|
278 |
+
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
279 |
+
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
280 |
+
|
281 |
+
@cached_property
|
282 |
+
def non_speech_tokens(self) -> Tuple[int]:
|
283 |
+
"""
|
284 |
+
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
285 |
+
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
286 |
+
|
287 |
+
- ♪♪♪
|
288 |
+
- ( SPEAKING FOREIGN LANGUAGE )
|
289 |
+
- [DAVID] Hey there,
|
290 |
+
|
291 |
+
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
292 |
+
"""
|
293 |
+
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
|
294 |
+
symbols += (
|
295 |
+
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
296 |
+
)
|
297 |
+
|
298 |
+
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
299 |
+
# In case they're multiple tokens, suppress the first token, which is safe because:
|
300 |
+
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
301 |
+
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
302 |
+
miscellaneous = set("♩♪♫♬♭♮♯")
|
303 |
+
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
304 |
+
|
305 |
+
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
306 |
+
result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
|
307 |
+
for symbol in symbols + list(miscellaneous):
|
308 |
+
for tokens in [
|
309 |
+
self.encoding.encode(symbol),
|
310 |
+
self.encoding.encode(" " + symbol),
|
311 |
+
]:
|
312 |
+
if len(tokens) == 1 or symbol in miscellaneous:
|
313 |
+
result.add(tokens[0])
|
314 |
+
|
315 |
+
return tuple(sorted(result))
|
316 |
+
|
317 |
+
def split_to_word_tokens(self, tokens: List[int]):
|
318 |
+
if self.language in {"zh", "ja", "th", "lo", "my", "yue"}:
|
319 |
+
# These languages don't typically use spaces, so it is difficult to split words
|
320 |
+
# without morpheme analysis. Here, we instead split words at any
|
321 |
+
# position where the tokens are decoded as valid unicode points
|
322 |
+
return self.split_tokens_on_unicode(tokens)
|
323 |
+
|
324 |
+
return self.split_tokens_on_spaces(tokens)
|
325 |
+
|
326 |
+
def split_tokens_on_unicode(self, tokens: List[int]):
|
327 |
+
decoded_full = self.decode_with_timestamps(tokens)
|
328 |
+
replacement_char = "\ufffd"
|
329 |
+
|
330 |
+
words = []
|
331 |
+
word_tokens = []
|
332 |
+
current_tokens = []
|
333 |
+
unicode_offset = 0
|
334 |
+
|
335 |
+
for token in tokens:
|
336 |
+
current_tokens.append(token)
|
337 |
+
decoded = self.decode_with_timestamps(current_tokens)
|
338 |
+
|
339 |
+
if (
|
340 |
+
replacement_char not in decoded
|
341 |
+
or decoded_full[unicode_offset + decoded.index(replacement_char)]
|
342 |
+
== replacement_char
|
343 |
+
):
|
344 |
+
words.append(decoded)
|
345 |
+
word_tokens.append(current_tokens)
|
346 |
+
current_tokens = []
|
347 |
+
unicode_offset += len(decoded)
|
348 |
+
|
349 |
+
return words, word_tokens
|
350 |
+
|
351 |
+
def split_tokens_on_spaces(self, tokens: List[int]):
|
352 |
+
subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
|
353 |
+
words = []
|
354 |
+
word_tokens = []
|
355 |
+
|
356 |
+
for subword, subword_tokens in zip(subwords, subword_tokens_list):
|
357 |
+
special = subword_tokens[0] >= self.eot
|
358 |
+
with_space = subword.startswith(" ")
|
359 |
+
punctuation = subword.strip() in string.punctuation
|
360 |
+
if special or with_space or punctuation or len(words) == 0:
|
361 |
+
words.append(subword)
|
362 |
+
word_tokens.append(subword_tokens)
|
363 |
+
else:
|
364 |
+
words[-1] = words[-1] + subword
|
365 |
+
word_tokens[-1].extend(subword_tokens)
|
366 |
+
|
367 |
+
return words, word_tokens
|
368 |
+
|
369 |
+
|
370 |
+
@lru_cache(maxsize=None)
|
371 |
+
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
372 |
+
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
373 |
+
ranks = {
|
374 |
+
base64.b64decode(token): int(rank)
|
375 |
+
for token, rank in (line.split() for line in open(vocab_path) if line)
|
376 |
+
}
|
377 |
+
n_vocab = len(ranks)
|
378 |
+
special_tokens = {}
|
379 |
+
|
380 |
+
specials = [
|
381 |
+
"<|endoftext|>",
|
382 |
+
"<|startoftranscript|>",
|
383 |
+
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
384 |
+
*[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
|
385 |
+
*[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
|
386 |
+
"<|translate|>",
|
387 |
+
"<|transcribe|>",
|
388 |
+
"<|startoflm|>",
|
389 |
+
"<|startofprev|>",
|
390 |
+
"<|nospeech|>",
|
391 |
+
"<|notimestamps|>",
|
392 |
+
*[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
|
393 |
+
*[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
|
394 |
+
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
|
395 |
+
]
|
396 |
+
|
397 |
+
for token in specials:
|
398 |
+
special_tokens[token] = n_vocab
|
399 |
+
n_vocab += 1
|
400 |
+
|
401 |
+
return tiktoken.Encoding(
|
402 |
+
name=os.path.basename(vocab_path),
|
403 |
+
explicit_n_vocab=n_vocab,
|
404 |
+
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
|
405 |
+
mergeable_ranks=ranks,
|
406 |
+
special_tokens=special_tokens,
|
407 |
+
)
|
408 |
+
|
409 |
+
|
410 |
+
@lru_cache(maxsize=None)
|
411 |
+
def get_tokenizer(
|
412 |
+
multilingual: bool,
|
413 |
+
*,
|
414 |
+
num_languages: int = 99,
|
415 |
+
language: Optional[str] = None,
|
416 |
+
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
417 |
+
) -> Tokenizer:
|
418 |
+
if language is not None:
|
419 |
+
language = language.lower()
|
420 |
+
if language not in LANGUAGES:
|
421 |
+
if language in TO_LANGUAGE_CODE:
|
422 |
+
language = TO_LANGUAGE_CODE[language]
|
423 |
+
else:
|
424 |
+
raise ValueError(f"Unsupported language: {language}")
|
425 |
+
|
426 |
+
if multilingual:
|
427 |
+
encoding_name = "multilingual_zh_ja_yue_char_del"
|
428 |
+
language = language or "en"
|
429 |
+
task = task or "transcribe"
|
430 |
+
else:
|
431 |
+
encoding_name = "gpt2"
|
432 |
+
language = None
|
433 |
+
task = None
|
434 |
+
|
435 |
+
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
436 |
+
|
437 |
+
return Tokenizer(
|
438 |
+
encoding=encoding, num_languages=num_languages, language=language, task=task
|
439 |
+
)
|