Spaces:
Running
on
Zero
Running
on
Zero
use thread pool in tools
Browse files- tools/extract_embedding.py +30 -47
- tools/extract_speech_token.py +31 -23
tools/extract_embedding.py
CHANGED
@@ -13,74 +13,39 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
16 |
-
import
|
17 |
-
from concurrent.futures import ThreadPoolExecutor
|
18 |
-
|
19 |
import onnxruntime
|
20 |
import torch
|
21 |
import torchaudio
|
22 |
import torchaudio.compliance.kaldi as kaldi
|
23 |
from tqdm import tqdm
|
24 |
-
from itertools import repeat
|
25 |
|
26 |
|
27 |
-
def
|
28 |
-
audio, sample_rate = torchaudio.load(
|
29 |
if sample_rate != 16000:
|
30 |
-
audio = torchaudio.transforms.Resample(
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
feat = feat - feat.mean(dim=0, keepdim=True)
|
35 |
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
36 |
-
return
|
37 |
|
38 |
|
39 |
def main(args):
|
40 |
-
|
41 |
-
with open("{}/wav.scp".format(args.dir)) as f:
|
42 |
-
for l in f:
|
43 |
-
l = l.replace("\n", "").split()
|
44 |
-
utt2wav[l[0]] = l[1]
|
45 |
-
with open("{}/utt2spk".format(args.dir)) as f:
|
46 |
-
for l in f:
|
47 |
-
l = l.replace("\n", "").split()
|
48 |
-
utt2spk[l[0]] = l[1]
|
49 |
-
|
50 |
-
assert os.path.exists(args.onnx_path), "onnx_path not exists"
|
51 |
-
|
52 |
-
option = onnxruntime.SessionOptions()
|
53 |
-
option.graph_optimization_level = (
|
54 |
-
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
55 |
-
)
|
56 |
-
option.intra_op_num_threads = 1
|
57 |
-
providers = ["CPUExecutionProvider"]
|
58 |
-
ort_session = onnxruntime.InferenceSession(
|
59 |
-
args.onnx_path, sess_options=option, providers=providers
|
60 |
-
)
|
61 |
-
|
62 |
-
all_utt = utt2wav.keys()
|
63 |
-
|
64 |
-
with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
|
65 |
-
results = list(
|
66 |
-
tqdm(
|
67 |
-
executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
|
68 |
-
total=len(utt2wav),
|
69 |
-
desc="Process data: "
|
70 |
-
)
|
71 |
-
)
|
72 |
-
|
73 |
utt2embedding, spk2embedding = {}, {}
|
74 |
-
for
|
|
|
75 |
utt2embedding[utt] = embedding
|
76 |
spk = utt2spk[utt]
|
77 |
if spk not in spk2embedding:
|
78 |
spk2embedding[spk] = []
|
79 |
spk2embedding[spk].append(embedding)
|
80 |
-
|
81 |
for k, v in spk2embedding.items():
|
82 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
83 |
-
|
84 |
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
85 |
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
86 |
|
@@ -91,4 +56,22 @@ if __name__ == "__main__":
|
|
91 |
parser.add_argument("--onnx_path", type=str)
|
92 |
parser.add_argument("--num_thread", type=int, default=8)
|
93 |
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
main(args)
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
|
17 |
import onnxruntime
|
18 |
import torch
|
19 |
import torchaudio
|
20 |
import torchaudio.compliance.kaldi as kaldi
|
21 |
from tqdm import tqdm
|
|
|
22 |
|
23 |
|
24 |
+
def single_job(utt):
|
25 |
+
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
26 |
if sample_rate != 16000:
|
27 |
+
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
28 |
+
feat = kaldi.fbank(audio,
|
29 |
+
num_mel_bins=80,
|
30 |
+
dither=0,
|
31 |
+
sample_frequency=16000)
|
32 |
feat = feat - feat.mean(dim=0, keepdim=True)
|
33 |
embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
34 |
+
return utt, embedding
|
35 |
|
36 |
|
37 |
def main(args):
|
38 |
+
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
utt2embedding, spk2embedding = {}, {}
|
40 |
+
for future in tqdm(as_completed(all_task)):
|
41 |
+
utt, embedding = future.result()
|
42 |
utt2embedding[utt] = embedding
|
43 |
spk = utt2spk[utt]
|
44 |
if spk not in spk2embedding:
|
45 |
spk2embedding[spk] = []
|
46 |
spk2embedding[spk].append(embedding)
|
|
|
47 |
for k, v in spk2embedding.items():
|
48 |
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
|
|
49 |
torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
|
50 |
torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
|
51 |
|
|
|
56 |
parser.add_argument("--onnx_path", type=str)
|
57 |
parser.add_argument("--num_thread", type=int, default=8)
|
58 |
args = parser.parse_args()
|
59 |
+
|
60 |
+
utt2wav, utt2spk = {}, {}
|
61 |
+
with open('{}/wav.scp'.format(args.dir)) as f:
|
62 |
+
for l in f:
|
63 |
+
l = l.replace('\n', '').split()
|
64 |
+
utt2wav[l[0]] = l[1]
|
65 |
+
with open('{}/utt2spk'.format(args.dir)) as f:
|
66 |
+
for l in f:
|
67 |
+
l = l.replace('\n', '').split()
|
68 |
+
utt2spk[l[0]] = l[1]
|
69 |
+
|
70 |
+
option = onnxruntime.SessionOptions()
|
71 |
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
72 |
+
option.intra_op_num_threads = 1
|
73 |
+
providers = ["CPUExecutionProvider"]
|
74 |
+
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
75 |
+
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
76 |
+
|
77 |
main(args)
|
tools/extract_speech_token.py
CHANGED
@@ -13,6 +13,7 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
|
|
16 |
import logging
|
17 |
import torch
|
18 |
from tqdm import tqdm
|
@@ -22,7 +23,36 @@ import torchaudio
|
|
22 |
import whisper
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def main(args):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
utt2wav = {}
|
27 |
with open('{}/wav.scp'.format(args.dir)) as f:
|
28 |
for l in f:
|
@@ -34,28 +64,6 @@ def main(args):
|
|
34 |
option.intra_op_num_threads = 1
|
35 |
providers = ["CUDAExecutionProvider"]
|
36 |
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
|
|
37 |
|
38 |
-
utt2speech_token = {}
|
39 |
-
for utt in tqdm(utt2wav.keys()):
|
40 |
-
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
41 |
-
if sample_rate != 16000:
|
42 |
-
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
43 |
-
if audio.shape[1] / 16000 > 30:
|
44 |
-
logging.warning('do not support extract speech token for audio longer than 30s')
|
45 |
-
speech_token = []
|
46 |
-
else:
|
47 |
-
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
48 |
-
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
49 |
-
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
50 |
-
utt2speech_token[utt] = speech_token
|
51 |
-
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
52 |
-
|
53 |
-
|
54 |
-
if __name__ == "__main__":
|
55 |
-
parser = argparse.ArgumentParser()
|
56 |
-
parser.add_argument('--dir',
|
57 |
-
type=str)
|
58 |
-
parser.add_argument('--onnx_path',
|
59 |
-
type=str)
|
60 |
-
args = parser.parse_args()
|
61 |
main(args)
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
import argparse
|
16 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
17 |
import logging
|
18 |
import torch
|
19 |
from tqdm import tqdm
|
|
|
23 |
import whisper
|
24 |
|
25 |
|
26 |
+
def single_job(utt):
|
27 |
+
audio, sample_rate = torchaudio.load(utt2wav[utt])
|
28 |
+
if sample_rate != 16000:
|
29 |
+
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
|
30 |
+
if audio.shape[1] / 16000 > 30:
|
31 |
+
logging.warning('do not support extract speech token for audio longer than 30s')
|
32 |
+
speech_token = []
|
33 |
+
else:
|
34 |
+
feat = whisper.log_mel_spectrogram(audio, n_mels=128)
|
35 |
+
speech_token = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.detach().cpu().numpy(),
|
36 |
+
ort_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
37 |
+
return utt, speech_token
|
38 |
+
|
39 |
+
|
40 |
def main(args):
|
41 |
+
all_task = [executor.submit(single_job, utt) for utt in utt2wav.keys()]
|
42 |
+
utt2speech_token = {}
|
43 |
+
for future in tqdm(as_completed(all_task)):
|
44 |
+
utt, speech_token = future.result()
|
45 |
+
utt2speech_token[utt] = speech_token
|
46 |
+
torch.save(utt2speech_token, '{}/utt2speech_token.pt'.format(args.dir))
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
parser = argparse.ArgumentParser()
|
51 |
+
parser.add_argument("--dir", type=str)
|
52 |
+
parser.add_argument("--onnx_path", type=str)
|
53 |
+
parser.add_argument("--num_thread", type=int, default=8)
|
54 |
+
args = parser.parse_args()
|
55 |
+
|
56 |
utt2wav = {}
|
57 |
with open('{}/wav.scp'.format(args.dir)) as f:
|
58 |
for l in f:
|
|
|
64 |
option.intra_op_num_threads = 1
|
65 |
providers = ["CUDAExecutionProvider"]
|
66 |
ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
|
67 |
+
executor = ThreadPoolExecutor(max_workers=args.num_thread)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
main(args)
|