# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang) # 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from contextlib import nullcontext import os import torch import torch.distributed as dist from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join class Executor: def __init__(self): self.step = 0 self.epoch = 0 self.rank = int(os.environ.get('RANK', 0)) self.device = torch.device('cuda:{}'.format(self.rank)) def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join): ''' Train one epoch ''' lr = optimizer.param_groups[0]['lr'] logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank)) logging.info('using accumulate grad, new batch size is {} times' ' larger than before'.format(info_dict['accum_grad'])) # A context manager to be used in conjunction with an instance of # torch.nn.parallel.DistributedDataParallel to be able to train # with uneven inputs across participating processes. model.train() model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext with model_context(): for batch_idx, batch_dict in enumerate(train_data_loader): info_dict["tag"] = "TRAIN" info_dict["step"] = self.step info_dict["epoch"] = self.epoch info_dict["batch_idx"] = batch_idx if cosyvoice_join(group_join, info_dict): break if info_dict["use_spk_embedding"] is True: batch_dict["embedding"] = batch_dict["spk_embedding"] else: batch_dict["embedding"] = batch_dict["utt_embedding"] # Disable gradient synchronizations across DDP processes. # Within this context, gradients will be accumulated on module # variables, which will later be synchronized. if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0: context = model.no_sync # Used for single gpu training and DDP gradient synchronization # processes. else: context = nullcontext with context(): info_dict = batch_forward(model, batch_dict, info_dict) info_dict = batch_backward(model, info_dict) info_dict = update_parameter_and_lr(model, optimizer, scheduler, info_dict) log_per_step(writer, info_dict) # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and (batch_idx + 1) % info_dict["accum_grad"] == 0: dist.barrier() self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False) model.train() if (batch_idx + 1) % info_dict["accum_grad"] == 0: self.step += 1 dist.barrier() self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True) @torch.inference_mode() def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True): ''' Cross validation on ''' logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank)) model.eval() total_num_utts, total_loss_dict = 0, {} # avoid division by 0 for batch_idx, batch_dict in enumerate(cv_data_loader): info_dict["tag"] = "CV" info_dict["step"] = self.step info_dict["epoch"] = self.epoch info_dict["batch_idx"] = batch_idx num_utts = len(batch_dict["utts"]) total_num_utts += num_utts info_dict = batch_forward(model, batch_dict, info_dict) for k, v in info_dict['loss_dict'].items(): if k not in total_loss_dict: total_loss_dict[k] = [] total_loss_dict[k].append(v.item() * num_utts) log_per_step(None, info_dict) for k, v in total_loss_dict.items(): total_loss_dict[k] = sum(v) / total_num_utts info_dict['loss_dict'] = total_loss_dict log_per_save(writer, info_dict) model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1) save_model(model, model_name, info_dict)