# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random import pyarrow.parquet as pq from io import BytesIO import torch import torchaudio from torch.nn.utils.rnn import pad_sequence import torch.nn.functional as F torchaudio.set_audio_backend('soundfile') AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'} def parquet_opener(data, mode='train', tts_data={}): """ Give url or local file, return file descriptor Inplace operation. Args: data(Iterable[str]): url or local file list Returns: Iterable[{src, stream}] """ for sample in data: assert 'src' in sample url = sample['src'] try: df = pq.read_table(url).to_pandas() for i in range(len(df)): if mode == 'inference' and df.loc[i, 'utt'] not in tts_data: continue sample.update(dict(df.loc[i])) if mode == 'train': # NOTE do not return sample directly, must initialize a new dict yield {**sample} else: for index, text in enumerate(tts_data[df.loc[i, 'utt']]): yield {**sample, 'tts_index': index, 'tts_text': text} except Exception as ex: logging.warning('Failed to open {}, ex info {}'.format(url, ex)) def filter(data, max_length=10240, min_length=10, token_max_length=200, token_min_length=1, min_output_input_ratio=0.0005, max_output_input_ratio=1, mode='train'): """ Filter sample according to feature and label length Inplace operation. Args:: data: Iterable[{key, wav, label, sample_rate}] max_length: drop utterance which is greater than max_length(10ms) min_length: drop utterance which is less than min_length(10ms) token_max_length: drop utterance which is greater than token_max_length, especially when use char unit for english modeling token_min_length: drop utterance which is less than token_max_length min_output_input_ratio: minimal ration of token_length / feats_length(10ms) max_output_input_ratio: maximum ration of token_length / feats_length(10ms) Returns: Iterable[{key, wav, label, sample_rate}] """ for sample in data: sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data'])) del sample['audio_data'] # sample['wav'] is torch.Tensor, we have 100 frames every second num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100 if num_frames < min_length: continue if num_frames > max_length: continue if len(sample['text_token']) < token_min_length: continue if len(sample['text_token']) > token_max_length: continue if len(sample['speech_token']) == 0: continue if num_frames != 0: if len(sample['text_token']) / num_frames < min_output_input_ratio: continue if len(sample['text_token']) / num_frames > max_output_input_ratio: continue yield sample def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'): """ Resample data. Inplace operation. Args: data: Iterable[{key, wav, label, sample_rate}] resample_rate: target resample rate Returns: Iterable[{key, wav, label, sample_rate}] """ for sample in data: assert 'sample_rate' in sample assert 'speech' in sample sample_rate = sample['sample_rate'] waveform = sample['speech'] if sample_rate != resample_rate: if sample_rate < min_sample_rate: continue sample['sample_rate'] = resample_rate sample['speech'] = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=resample_rate)(waveform) max_val = sample['speech'].abs().max() if max_val > 1: sample['speech'] /= max_val yield sample def compute_fbank(data, feat_extractor, mode='train'): """ Extract fbank Args: data: Iterable[{key, wav, label, sample_rate}] Returns: Iterable[{key, feat, label}] """ for sample in data: assert 'sample_rate' in sample assert 'speech' in sample assert 'utt' in sample assert 'text_token' in sample waveform = sample['speech'] mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1) sample['speech_feat'] = mat del sample['speech'] yield sample def parse_embedding(data, normalize, mode='train'): """ Parse utt_embedding/spk_embedding Args: data: Iterable[{key, wav, label, sample_rate}] Returns: Iterable[{key, feat, label}] """ for sample in data: sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32) sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32) if normalize: sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0) sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0) yield sample def tokenize(data, get_tokenizer, allowed_special, mode='train'): """ Decode text to chars or BPE Inplace operation Args: data: Iterable[{key, wav, txt, sample_rate}] Returns: Iterable[{key, wav, txt, tokens, label, sample_rate}] """ tokenizer = get_tokenizer() for sample in data: assert 'text' in sample sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special) if mode == 'inference': sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special) yield sample def shuffle(data, shuffle_size=10000, mode='train'): """ Local shuffle the data Args: data: Iterable[{key, feat, label}] shuffle_size: buffer size for shuffle Returns: Iterable[{key, feat, label}] """ buf = [] for sample in data: buf.append(sample) if len(buf) >= shuffle_size: random.shuffle(buf) for x in buf: yield x buf = [] # The sample left over random.shuffle(buf) for x in buf: yield x def sort(data, sort_size=500, mode='train'): """ Sort the data by feature length. Sort is used after shuffle and before batch, so we can group utts with similar lengths into a batch, and `sort_size` should be less than `shuffle_size` Args: data: Iterable[{key, feat, label}] sort_size: buffer size for sort Returns: Iterable[{key, feat, label}] """ buf = [] for sample in data: buf.append(sample) if len(buf) >= sort_size: buf.sort(key=lambda x: x['speech_feat'].size(0)) for x in buf: yield x buf = [] # The sample left over buf.sort(key=lambda x: x['speech_feat'].size(0)) for x in buf: yield x def static_batch(data, batch_size=16): """ Static batch the data by `batch_size` Args: data: Iterable[{key, feat, label}] batch_size: batch size Returns: Iterable[List[{key, feat, label}]] """ buf = [] for sample in data: buf.append(sample) if len(buf) >= batch_size: yield buf buf = [] if len(buf) > 0: yield buf def dynamic_batch(data, max_frames_in_batch=12000, mode='train'): """ Dynamic batch the data until the total frames in batch reach `max_frames_in_batch` Args: data: Iterable[{key, feat, label}] max_frames_in_batch: max_frames in one batch Returns: Iterable[List[{key, feat, label}]] """ buf = [] longest_frames = 0 for sample in data: assert 'speech_feat' in sample assert isinstance(sample['speech_feat'], torch.Tensor) new_sample_frames = sample['speech_feat'].size(0) longest_frames = max(longest_frames, new_sample_frames) frames_after_padding = longest_frames * (len(buf) + 1) if frames_after_padding > max_frames_in_batch: yield buf buf = [sample] longest_frames = new_sample_frames else: buf.append(sample) if len(buf) > 0: yield buf def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'): """ Wrapper for static/dynamic batch """ if mode == 'inference': return static_batch(data, 1) else: if batch_type == 'static': return static_batch(data, batch_size) elif batch_type == 'dynamic': return dynamic_batch(data, max_frames_in_batch) else: logging.fatal('Unsupported batch type {}'.format(batch_type)) def padding(data, use_spk_embedding, mode='train'): """ Padding the data into training data Args: data: Iterable[List[{key, feat, label}]] Returns: Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)] """ for sample in data: assert isinstance(sample, list) speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample], dtype=torch.int32) order = torch.argsort(speech_feat_len, descending=True) utts = [sample[i]['utt'] for i in order] speech_token = [torch.tensor(sample[i]['speech_token']) for i in order] speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32) speech_token = pad_sequence(speech_token, batch_first=True, padding_value=0) speech_feat = [sample[i]['speech_feat'] for i in order] speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32) speech_feat = pad_sequence(speech_feat, batch_first=True, padding_value=0) text = [sample[i]['text'] for i in order] text_token = [torch.tensor(sample[i]['text_token']) for i in order] text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32) text_token = pad_sequence(text_token, batch_first=True, padding_value=0) utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0) spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0) batch = { "utts": utts, "speech_token": speech_token, "speech_token_len": speech_token_len, "speech_feat": speech_feat, "speech_feat_len": speech_feat_len, "text": text, "text_token": text_token, "text_token_len": text_token_len, "utt_embedding": utt_embedding, "spk_embedding": spk_embedding, } if mode == 'inference': tts_text = [sample[i]['tts_text'] for i in order] tts_index = [sample[i]['tts_index'] for i in order] tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order] tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32) tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1) batch.update({'tts_text': tts_text, 'tts_index': tts_index, 'tts_text_token': tts_text_token, 'tts_text_token_len': tts_text_token_len}) if use_spk_embedding is True: batch["embedding"] = batch["spk_embedding"] else: batch["embedding"] = batch["utt_embedding"] yield batch