# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com) # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) import os import sys import onnxruntime import random import torch from tqdm import tqdm ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../..'.format(ROOT_DIR)) sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) from cosyvoice.cli.cosyvoice import CosyVoice def get_dummy_input(batch_size, seq_len, out_channels, device): x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device) mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) t = torch.rand((batch_size), dtype=torch.float32, device=device) spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device) cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device) return x, mask, mu, t, spks, cond def get_args(): parser = argparse.ArgumentParser(description='export your model for deployment') parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice-300M', help='local path') args = parser.parse_args() print(args) return args def main(): args = get_args() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False) # 1. export flow decoder estimator estimator = cosyvoice.model.flow.decoder.estimator device = cosyvoice.model.device batch_size, seq_len = 1, 256 out_channels = cosyvoice.model.flow.decoder.estimator.out_channels x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device) torch.onnx.export( estimator, (x, mask, mu, t, spks, cond), '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), export_params=True, opset_version=18, do_constant_folding=True, input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'], output_names=['estimator_out'], dynamic_axes={ 'x': {0: 'batch_size', 2: 'seq_len'}, 'mask': {0: 'batch_size', 2: 'seq_len'}, 'mu': {0: 'batch_size', 2: 'seq_len'}, 'cond': {0: 'batch_size', 2: 'seq_len'}, 't': {0: 'batch_size'}, 'spks': {0: 'batch_size'}, 'estimator_out': {0: 'batch_size', 2: 'seq_len'}, } ) # 2. test computation consistency option = onnxruntime.SessionOptions() option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL option.intra_op_num_threads = 1 providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider'] estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir), sess_options=option, providers=providers) for _ in tqdm(range(10)): x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device) output_pytorch = estimator(x, mask, mu, t, spks, cond) ort_inputs = { 'x': x.cpu().numpy(), 'mask': mask.cpu().numpy(), 'mu': mu.cpu().numpy(), 't': t.cpu().numpy(), 'spks': spks.cpu().numpy(), 'cond': cond.cpu().numpy() } output_onnx = estimator_onnx.run(None, ort_inputs)[0] torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4) if __name__ == "__main__": main()