# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) import os import torch from torch.utils.data import DataLoader import torchaudio from hyperpyyaml import load_hyperpyyaml from tqdm import tqdm from cosyvoice.cli.model import CosyVoiceModel from cosyvoice.dataset.dataset import Dataset def get_args(): parser = argparse.ArgumentParser(description='inference with your model') parser.add_argument('--config', required=True, help='config file') parser.add_argument('--prompt_data', required=True, help='prompt data file') parser.add_argument('--prompt_utt2data', required=True, help='prompt data file') parser.add_argument('--tts_text', required=True, help='tts input file') parser.add_argument('--llm_model', required=True, help='llm model file') parser.add_argument('--flow_model', required=True, help='flow model file') parser.add_argument('--hifigan_model', required=True, help='hifigan model file') parser.add_argument('--gpu', type=int, default=-1, help='gpu id for this rank, -1 for cpu') parser.add_argument('--mode', default='sft', choices=['sft', 'zero_shot'], help='inference mode') parser.add_argument('--result_dir', required=True, help='asr result file') args = parser.parse_args() print(args) return args def main(): args = get_args() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Init cosyvoice models from configs use_cuda = args.gpu >= 0 and torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') with open(args.config, 'r') as f: configs = load_hyperpyyaml(f) model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift']) model.load(args.llm_model, args.flow_model, args.hifigan_model) test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False, tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data) test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0) del configs os.makedirs(args.result_dir, exist_ok=True) fn = os.path.join(args.result_dir, 'wav.scp') f = open(fn, 'w') with torch.no_grad(): for _, batch in tqdm(enumerate(test_data_loader)): utts = batch["utts"] assert len(utts) == 1, "inference mode only support batchsize 1" text_token = batch["text_token"].to(device) text_token_len = batch["text_token_len"].to(device) tts_index = batch["tts_index"] tts_text_token = batch["tts_text_token"].to(device) tts_text_token_len = batch["tts_text_token_len"].to(device) speech_token = batch["speech_token"].to(device) speech_token_len = batch["speech_token_len"].to(device) speech_feat = batch["speech_feat"].to(device) speech_feat_len = batch["speech_feat_len"].to(device) utt_embedding = batch["utt_embedding"].to(device) spk_embedding = batch["spk_embedding"].to(device) if args.mode == 'sft': model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding} else: model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'prompt_text': text_token, 'prompt_text_len': text_token_len, 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len, 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, 'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding} tts_speeches = [] for model_output in model.inference(**model_input): tts_speeches.append(model_output['tts_speech']) tts_speeches = torch.concat(tts_speeches, dim=1) tts_key = '{}_{}'.format(utts[0], tts_index[0]) tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key)) torchaudio.save(tts_fn, tts_speeches, sample_rate=22050) f.write('{} {}\n'.format(tts_key, tts_fn)) f.flush() f.close() logging.info('Result wav.scp saved in {}'.format(fn)) if __name__ == '__main__': main()