Spaces:
Sleeping
Sleeping
File size: 1,442 Bytes
4427aba 1f3f504 7725d56 4427aba 0f497f0 4427aba beaa97f 4427aba 0f497f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from PIL import Image
import requests
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
import gradio as gr
from models.blip import blip_decoder
image_size = 384
transform = transforms.Compose([
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
model = blip_decoder(pretrained=model_url, image_size=384, vit='large')
model.eval()
model = model.to(device)
def inference_image_caption(raw_image):
image = transform(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)
return caption[0]
inputs = gr.Image(type='pil', label="Input")
outputs = gr.outputs.Textbox(label="Output")
title = "BLIP"
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation"
app = gr.Interface(inference_image_caption, inputs, outputs, title=title, description=description, examples=[['starrynight.jpeg',]])
app.launch(enable_queue=True, share=True) |