Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import DataLoader | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from data.coco_karpathy_dataset import coco_karpathy_train, coco_karpathy_caption_eval, coco_karpathy_retrieval_eval | |
from data.nocaps_dataset import nocaps_eval | |
from data.flickr30k_dataset import flickr30k_train, flickr30k_retrieval_eval | |
from data.vqa_dataset import vqa_dataset | |
from data.nlvr_dataset import nlvr_dataset | |
from data.pretrain_dataset import pretrain_dataset | |
from transform.randaugment import RandomAugment | |
def create_dataset(dataset, config, min_scale=0.5): | |
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
transform_train = transforms.Compose([ | |
transforms.RandomResizedCrop(config['image_size'],scale=(min_scale, 1.0),interpolation=InterpolationMode.BICUBIC), | |
transforms.RandomHorizontalFlip(), | |
RandomAugment(2,5,isPIL=True,augs=['Identity','AutoContrast','Brightness','Sharpness','Equalize', | |
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']), | |
transforms.ToTensor(), | |
normalize, | |
]) | |
transform_test = transforms.Compose([ | |
transforms.Resize((config['image_size'],config['image_size']),interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
normalize, | |
]) | |
if dataset=='pretrain': | |
dataset = pretrain_dataset(config['train_file'], config['laion_path'], transform_train) | |
return dataset | |
elif dataset=='caption_coco': | |
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root'], prompt=config['prompt']) | |
val_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'val') | |
test_dataset = coco_karpathy_caption_eval(transform_test, config['image_root'], config['ann_root'], 'test') | |
return train_dataset, val_dataset, test_dataset | |
elif dataset=='nocaps': | |
val_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'val') | |
test_dataset = nocaps_eval(transform_test, config['image_root'], config['ann_root'], 'test') | |
return val_dataset, test_dataset | |
elif dataset=='retrieval_coco': | |
train_dataset = coco_karpathy_train(transform_train, config['image_root'], config['ann_root']) | |
val_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val') | |
test_dataset = coco_karpathy_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test') | |
return train_dataset, val_dataset, test_dataset | |
elif dataset=='retrieval_flickr': | |
train_dataset = flickr30k_train(transform_train, config['image_root'], config['ann_root']) | |
val_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'val') | |
test_dataset = flickr30k_retrieval_eval(transform_test, config['image_root'], config['ann_root'], 'test') | |
return train_dataset, val_dataset, test_dataset | |
elif dataset=='vqa': | |
train_dataset = vqa_dataset(transform_train, config['ann_root'], config['vqa_root'], config['vg_root'], | |
train_files = config['train_files'], split='train') | |
test_dataset = vqa_dataset(transform_test, config['ann_root'], config['vqa_root'], config['vg_root'], split='test') | |
return train_dataset, test_dataset | |
elif dataset=='nlvr': | |
train_dataset = nlvr_dataset(transform_train, config['image_root'], config['ann_root'],'train') | |
val_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'val') | |
test_dataset = nlvr_dataset(transform_test, config['image_root'], config['ann_root'],'test') | |
return train_dataset, val_dataset, test_dataset | |
def create_sampler(datasets, shuffles, num_tasks, global_rank): | |
samplers = [] | |
for dataset,shuffle in zip(datasets,shuffles): | |
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle) | |
samplers.append(sampler) | |
return samplers | |
def create_loader(datasets, samplers, batch_size, num_workers, is_trains, collate_fns): | |
loaders = [] | |
for dataset,sampler,bs,n_worker,is_train,collate_fn in zip(datasets,samplers,batch_size,num_workers,is_trains,collate_fns): | |
if is_train: | |
shuffle = (sampler is None) | |
drop_last = True | |
else: | |
shuffle = False | |
drop_last = False | |
loader = DataLoader( | |
dataset, | |
batch_size=bs, | |
num_workers=n_worker, | |
pin_memory=True, | |
sampler=sampler, | |
shuffle=shuffle, | |
collate_fn=collate_fn, | |
drop_last=drop_last, | |
) | |
loaders.append(loader) | |
return loaders | |