Spaces:
Sleeping
Sleeping
''' | |
* Copyright (c) 2022, salesforce.com, inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: BSD-3-Clause | |
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
* By Junnan Li | |
''' | |
import argparse | |
import os | |
import ruamel_yaml as yaml | |
import numpy as np | |
import random | |
import time | |
import datetime | |
import json | |
from pathlib import Path | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
import torch.backends.cudnn as cudnn | |
import torch.distributed as dist | |
from models.blip_vqa import blip_vqa | |
import utils | |
from utils import cosine_lr_schedule | |
from data import create_dataset, create_sampler, create_loader | |
from data.vqa_dataset import vqa_collate_fn | |
from data.utils import save_result | |
def train(model, data_loader, optimizer, epoch, device): | |
# train | |
model.train() | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}')) | |
header = 'Train Epoch: [{}]'.format(epoch) | |
print_freq = 50 | |
for i,(image, question, answer, weights, n) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): | |
image, weights = image.to(device,non_blocking=True), weights.to(device,non_blocking=True) | |
loss = model(image, question, answer, train=True, n=n, weights=weights) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
metric_logger.update(loss=loss.item()) | |
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger.global_avg()) | |
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()} | |
def evaluation(model, data_loader, device, config) : | |
# test | |
model.eval() | |
metric_logger = utils.MetricLogger(delimiter=" ") | |
header = 'Generate VQA test result:' | |
print_freq = 50 | |
result = [] | |
if config['inference']=='rank': | |
answer_list = data_loader.dataset.answer_list | |
answer_candidates = model.tokenizer(answer_list, padding='longest', return_tensors='pt').to(device) | |
answer_candidates.input_ids[:,0] = model.tokenizer.bos_token_id | |
for n, (image, question, question_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): | |
image = image.to(device,non_blocking=True) | |
if config['inference']=='generate': | |
answers = model(image, question, train=False, inference='generate') | |
for answer, ques_id in zip(answers, question_id): | |
ques_id = int(ques_id.item()) | |
result.append({"question_id":ques_id, "answer":answer}) | |
elif config['inference']=='rank': | |
answer_ids = model(image, question, answer_candidates, train=False, inference='rank', k_test=config['k_test']) | |
for ques_id, answer_id in zip(question_id, answer_ids): | |
result.append({"question_id":int(ques_id.item()), "answer":answer_list[answer_id]}) | |
return result | |
def main(args, config): | |
utils.init_distributed_mode(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
cudnn.benchmark = True | |
#### Dataset #### | |
print("Creating vqa datasets") | |
datasets = create_dataset('vqa', config) | |
if args.distributed: | |
num_tasks = utils.get_world_size() | |
global_rank = utils.get_rank() | |
samplers = create_sampler(datasets, [True, False], num_tasks, global_rank) | |
else: | |
samplers = [None, None] | |
train_loader, test_loader = create_loader(datasets,samplers, | |
batch_size=[config['batch_size_train'],config['batch_size_test']], | |
num_workers=[4,4],is_trains=[True, False], | |
collate_fns=[vqa_collate_fn,None]) | |
#### Model #### | |
print("Creating model") | |
model = blip_vqa(pretrained=config['pretrained'], image_size=config['image_size'], | |
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer']) | |
model = model.to(device) | |
model_without_ddp = model | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) | |
model_without_ddp = model.module | |
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay']) | |
best = 0 | |
best_epoch = 0 | |
print("Start training") | |
start_time = time.time() | |
for epoch in range(0, config['max_epoch']): | |
if not args.evaluate: | |
if args.distributed: | |
train_loader.sampler.set_epoch(epoch) | |
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr']) | |
train_stats = train(model, train_loader, optimizer, epoch, device) | |
else: | |
break | |
if utils.is_main_process(): | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, | |
} | |
with open(os.path.join(args.output_dir, "log.txt"),"a") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
save_obj = { | |
'model': model_without_ddp.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'config': config, | |
'epoch': epoch, | |
} | |
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch)) | |
dist.barrier() | |
vqa_result = evaluation(model_without_ddp, test_loader, device, config) | |
result_file = save_result(vqa_result, args.result_dir, 'vqa_result') | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config', default='./configs/vqa.yaml') | |
parser.add_argument('--output_dir', default='output/VQA') | |
parser.add_argument('--evaluate', action='store_true') | |
parser.add_argument('--device', default='cuda') | |
parser.add_argument('--seed', default=42, type=int) | |
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') | |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') | |
parser.add_argument('--distributed', default=True, type=bool) | |
args = parser.parse_args() | |
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) | |
args.result_dir = os.path.join(args.output_dir, 'result') | |
Path(args.output_dir).mkdir(parents=True, exist_ok=True) | |
Path(args.result_dir).mkdir(parents=True, exist_ok=True) | |
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w')) | |
main(args, config) |